Stationary Quantum Vortex Street in a Driven-Dissipative Quantum Fluid of Light

被引:19
|
作者
Koniakhin, S. V. [1 ,2 ]
Bleu, O. [1 ,3 ,4 ]
Stupin, D. D. [2 ]
Pigeon, S. [5 ]
Maitre, A. [5 ]
Claude, F. [5 ]
Lerario, G. [5 ,6 ]
Glorieux, Q. [5 ]
Bramati, A. [5 ]
Solnyshkov, D. [1 ]
Malpuech, G. [1 ]
机构
[1] Univ Clermont Auvergne, Inst Pascal PHOTON N2, CNRS, SIGMA Clermont, F-63000 Clermont Ferrand, France
[2] St Petersburg Acad Univ, Nanotechnol Res & Educ Ctr, Russian Acad Sci, St Petersburg 194021, Russia
[3] Monash Univ, ARC Ctr Excellence Future Low Energy Elect Techno, Melbourne, Vic 3800, Australia
[4] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia
[5] Sorbonne Univ, Lab Kastler Brossel, PSL Res Univ, CNRS,ENS,Coll France, 4 Pl Jussieu, F-75252 Paris, France
[6] CNR NANOTEC, Ist Nanotecnol, Via Monteroni, I-73100 Lecce, Italy
基金
欧盟地平线“2020”;
关键词
POLARITON SOLITONS;
D O I
10.1103/PhysRevLett.123.215301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low-density regions containing density-phase singularities confined between high-density regions. We show that, in 1D channels, an odd (1 or 3) or even (2 or 4) number of dark solitons form parallel to the channel axis in order to accommodate the phase constraint induced by the pumps in the barriers. These soliton molecules are typically unstable and evolve toward stationary symmetric or antisymmetric arrays of vortex streets straightforwardly observable in cw experiments. The flexibility of this photonic platform allows implementing more complicated potentials such as mazelike channels, with the vortex streets connecting the entrances and thus solving the maze.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Neural quantum propagators for driven-dissipative quantum dynamics
    Zhang, Jiaji
    Benavides-Riveros, Carlos L.
    Chen, Lipeng
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [2] Multistability of Driven-Dissipative Quantum Spins
    Landa, Haggai
    Schiro, Marco
    Misguich, Gregoire
    PHYSICAL REVIEW LETTERS, 2020, 124 (04)
  • [3] Driven-dissipative quantum Monte Carlo method for open quantum systems
    Nagy, Alexandra
    Savona, Vincenzo
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [4] Dynamical response theory for driven-dissipative quantum systems
    Venuti, Lorenzo Campos
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [5] Quantum estimation of coupling strengths in driven-dissipative optomechanics
    Sala, Kamila
    Doicin, Tib
    Armour, Andrew D.
    Tufarelli, Tommaso
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [6] Critical fluctuations in a confined driven-dissipative quantum condensate
    Alnatah, Hassan
    Comaron, Paolo
    Mukherjee, Shouvik
    Beaumariage, Jonathan
    Pfeiffer, Loren N.
    West, Ken
    Baldwin, Kirk
    Szymanska, Marzena
    Snoke, David W.
    SCIENCE ADVANCES, 2024, 10 (12):
  • [7] Nonequilibrium phase transition in a driven-dissipative quantum antiferromagnet
    Kalthoff, Mona H.
    Kennes, Dante M.
    Millis, Andrew J.
    Sentef, Michael A.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [8] Dynamical Critical Exponents in Driven-Dissipative Quantum Systems
    Comaron, P.
    Dagvadorj, G.
    Zamora, A.
    Carusotto, I.
    Proukakis, N. P.
    Szymanska, M. H.
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [9] Superquantization rule for multistability in driven-dissipative quantum systems
    Nemet, Nikolett
    Kurko, Arpad
    Vukics, Andras
    Domokos, Peter
    NEW JOURNAL OF PHYSICS, 2024, 26 (09):
  • [10] Quantum estimation of Kerr nonlinearity in driven-dissipative systems
    Xie, Dong
    Xu, Chunling
    Wang, An Min
    RESULTS IN PHYSICS, 2022, 42