A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject-specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects. Copyright (C) 2003 John Wiley Sons, Ltd.
机构:
Korea Inst Radiol & Med Sci, Natl Radiat Emergency Med Ctr, Lab Low Dose Risk Assessment, Seoul 01812, South KoreaKorea Inst Radiol & Med Sci, Natl Radiat Emergency Med Ctr, Lab Low Dose Risk Assessment, Seoul 01812, South Korea
Kim, Jiyeong
Sohn, Insuk
论文数: 0引用数: 0
h-index: 0
机构:
Samsung Med Ctr, Stat & Data Ctr, Seoul 06351, South KoreaKorea Inst Radiol & Med Sci, Natl Radiat Emergency Med Ctr, Lab Low Dose Risk Assessment, Seoul 01812, South Korea
Sohn, Insuk
Lee, Keunbaik
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaKorea Inst Radiol & Med Sci, Natl Radiat Emergency Med Ctr, Lab Low Dose Risk Assessment, Seoul 01812, South Korea
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
Kwak, Na Young
Lee, Keunbaik
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea