Estimating covariance functions for longitudinal data using a random regression model

被引:188
|
作者
Meyer, K [1 ]
机构
[1] Univ Edinburgh, Inst Cell Anim & Populat Biol, Edinburgh EH9 3JT, Midlothian, Scotland
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会; 澳大利亚研究理事会;
关键词
covariance functions; genetic parameters; longitudinal data; restricted maximum likelihood; random regression model;
D O I
10.1051/gse:19980302
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
A method is described to estimate genetic and environmental covariance functions for traits measured repeatedly per individual along some continuous scale, such as time, directly from the data by restricted maximum likelihood. It relies on the equivalence of a covariance function and a random regression model. By regressing on random, orthogonal polynomials of the continuous scale variable, the coefficients of covariance functions can be estimated as the covariances among the regression coefficients. A parameterisation is described which allows the rank of estimated covariance matrices and functions to be restricted, thus facilitating a highly parsimonious description of the covariance structure. The procedure and the type of results which can be obtained are illustrated with an application to mature weight records of beef cows. (C) Inra/Elsevier, Paris.
引用
收藏
页码:221 / 240
页数:20
相关论文
共 50 条
  • [2] Estimating covariance matrices using estimating functions in nonparametric and semiparametric regression
    Carroll, RJ
    Iturria, SJ
    Gutierrez, RG
    [J]. SELECTED PROCEEDINGS OF THE SYMPOSIUM ON ESTIMATING FUNCTIONS, 1997, 32 : 399 - 404
  • [3] Robust estimation in joint mean–covariance regression model for longitudinal data
    Xueying Zheng
    Wing Kam Fung
    Zhongyi Zhu
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 617 - 638
  • [4] Joint mean-covariance random effect model for longitudinal data
    Bai, Yongxin
    Qian, Manling
    Tian, Maozai
    [J]. BIOMETRICAL JOURNAL, 2020, 62 (01) : 7 - 23
  • [5] A Bayesian generalized random regression model for estimating heritability using overdispersed count data
    Mair, Colette
    Stear, Michael
    Johnson, Paul
    Denwood, Matthew
    de Cisneros, Joaquin Prada Jimenez
    Stefan, Thorsten
    Matthews, Louise
    [J]. GENETICS SELECTION EVOLUTION, 2015, 47
  • [6] A Bayesian generalized random regression model for estimating heritability using overdispersed count data
    Colette Mair
    Michael Stear
    Paul Johnson
    Matthew Denwood
    Joaquin Prada Jimenez de Cisneros
    Thorsten Stefan
    Louise Matthews
    [J]. Genetics Selection Evolution, 47
  • [7] Mixture regression for longitudinal data based on joint mean-covariance model
    Yu, Jing
    Nummi, Tapio
    Pan, Jianxin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [8] Robust estimation in joint mean-covariance regression model for longitudinal data
    Zheng, Xueying
    Fung, Wing Kam
    Zhu, Zhongyi
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (04) : 617 - 638
  • [9] Weighted Generalized Estimating Functions for Longitudinal Response and Covariate Data That Are Missing at Random
    Chen, Baojiang
    Yi, Grace Y.
    Cook, Richard J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 336 - 353
  • [10] Genetic analysis of longitudinal height data using random regression
    Wang, Chunkao
    Andersson, Bengt
    Waldmann, Patrik
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2009, 39 (10) : 1939 - 1948