Simulation of anisotropic wet chemical etching using a physical model

被引:21
|
作者
van Veenendaal, E
Nijdam, AJ
van Suchtelen, J
Sato, K
Gardeniers, JGE
van Enckevort, WJP
Elwenspoek, M
机构
[1] Univ Twente, MESA, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Res Inst, NL-7500 AE Enschede, Netherlands
[3] Univ Nijmegen, Dept Solid State Chem, RIM, NL-6525 ED Nijmegen, Netherlands
[4] Nagoya Univ, Dept Micro Syst Engn, Nagoya, Aichi 4648603, Japan
关键词
anisotropic etching; simulation;
D O I
10.1016/S0924-4247(00)00362-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method to describe the orientation dependence of the etch rate in anisotropic etching solutions of silicon, or any other single crystalline material, by analytical functions. The parameters in these functions have a simple physical meaning. Crystals have a small number of atomically smooth faces, which etch (or grow) slowly as a consequence of the removal (or addition) of atoms by rows and layers. However, smooth faces have a roughening transition (well known in statistical physics) [P. Bennema, Growth and morphology of crystals: integration of theories of Roughning and Hartman-Perdok theorie, in: D.T.J. Hurle (Ed.), Handbook of Crystal Growth, vol. I, Elsevier, Amsterdam (1993) 477; M. Elwenspoek. On the mechanism of anisotropic etching of silicon, J. Electrochem. Sec., 140 (1993) 2075]; at increasing temperature they become rougher, and accordingly, the etch and growth rates increase. Consequently, the basic physical parameters of our functions are the roughness of the smooth faces and the velocity of steps on these faces. We have applied our method to the practical case of etching of silicon in KOH solutions. The maximum deviation between experimental data and simulation using only nine physically meaningful parameters is less than 5% of the maximum etch rate. The method can easily be adapted to describe the growth or etching process of any other crystal. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [41] Wet chemical etching of GaN using hot pyrophosphoric acid
    Shimizu, M
    Suzuki, A
    Watanabe, M
    Shirakashi, J
    Balakrishnan, K
    Okumura, H
    BLUE LASER AND LIGHT EMITTING DIODES II, 1998, : 723 - 726
  • [42] An improved anisotropic wet etching process for the fabrication of silicon MEMS structures using a single etching mask
    Pal, P.
    Sato, K.
    Gosalvez, M. A.
    Shikida, M.
    MEMS 2008: 21ST IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2008, : 327 - +
  • [43] ANISOTROPIC WET ETCHING OF ALUMINUM ELECTRODES BY AN EVACUATED ETCHING SYSTEM.
    Hara, Tohru
    Hirayama, Takeshi
    Ando, Hirofumi
    Furukawa, Masakazu
    1985, (132)
  • [44] THE MICROSCOPIC ACTIVATION ENERGY ETCHING MECHANISM IN ANISOTROPIC WET ETCHING OF QUARTZ
    Zhang, Hui
    Xing, Yan
    Zhang, Jin
    Li, Yuan
    2018 IEEE MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2018, : 471 - 474
  • [45] Fabrication of Si nano-wires using anisotropic dry and wet etching
    Normand, P
    Tsoukalas, D
    Aidinis, C
    Tserepi, A
    Kouvatsos, D
    Kapetanakis, E
    MICROELECTRONIC ENGINEERING, 1998, 42 : 551 - 554
  • [46] Bulk micromachining fabrication platform using the integration of DRIE and wet anisotropic etching
    Chu, HY
    Fang, WL
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2005, 11 (2-3): : 141 - 150
  • [47] Integration of benzocyclobutene polymers and silicon micromachined structures using anisotropic wet etching
    Ghalichechian, N
    Modafe, A
    Ghodssi, R
    Lazzeri, P
    Micheli, V
    Anderle, M
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (05): : 2439 - 2447
  • [48] Fabrication of Si nano-wires using anisotropic dry and wet etching
    Inst of Microelectronics - IMEL, Aghia Paraskevi, Greece
    Microelectron Eng, (551-554):
  • [49] Bulk micromachining fabrication platform using the integration of DRIE and wet anisotropic etching
    Huai-Yuan Chu
    Weileun Fang
    Microsystem Technologies, 2005, 11 : 141 - 150
  • [50] Three-dimensional simulation of orientation-dependent wet chemical etching
    Horn, A
    Wachutka, G
    SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2004, 2004, : 133 - 136