Simulation of anisotropic wet chemical etching using a physical model

被引:21
|
作者
van Veenendaal, E
Nijdam, AJ
van Suchtelen, J
Sato, K
Gardeniers, JGE
van Enckevort, WJP
Elwenspoek, M
机构
[1] Univ Twente, MESA, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Res Inst, NL-7500 AE Enschede, Netherlands
[3] Univ Nijmegen, Dept Solid State Chem, RIM, NL-6525 ED Nijmegen, Netherlands
[4] Nagoya Univ, Dept Micro Syst Engn, Nagoya, Aichi 4648603, Japan
关键词
anisotropic etching; simulation;
D O I
10.1016/S0924-4247(00)00362-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method to describe the orientation dependence of the etch rate in anisotropic etching solutions of silicon, or any other single crystalline material, by analytical functions. The parameters in these functions have a simple physical meaning. Crystals have a small number of atomically smooth faces, which etch (or grow) slowly as a consequence of the removal (or addition) of atoms by rows and layers. However, smooth faces have a roughening transition (well known in statistical physics) [P. Bennema, Growth and morphology of crystals: integration of theories of Roughning and Hartman-Perdok theorie, in: D.T.J. Hurle (Ed.), Handbook of Crystal Growth, vol. I, Elsevier, Amsterdam (1993) 477; M. Elwenspoek. On the mechanism of anisotropic etching of silicon, J. Electrochem. Sec., 140 (1993) 2075]; at increasing temperature they become rougher, and accordingly, the etch and growth rates increase. Consequently, the basic physical parameters of our functions are the roughness of the smooth faces and the velocity of steps on these faces. We have applied our method to the practical case of etching of silicon in KOH solutions. The maximum deviation between experimental data and simulation using only nine physically meaningful parameters is less than 5% of the maximum etch rate. The method can easily be adapted to describe the growth or etching process of any other crystal. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [31] Application of the evolutionary kinetic Monte Carlo method for the simulation of anisotropic wet etching of sapphire
    Wu, Guorong
    Xing, Yan
    Chen, Ye
    Zhou, Zai-Fa
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2021, 31 (06)
  • [32] LEVEL SET SIMULATION OF SURFACE EVOLUTION IN ANISOTROPIC WET ETCHING OF PATTERNED SAPPHIRE SUBTRATE
    Zhang, Jie
    Xing, Yan
    Gosalvez, Miguel A.
    Qiu, Xiaoli
    Lin, Xiaohui
    Zhang, Chibin
    2019 IEEE 32ND INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2019, : 361 - 364
  • [33] Anisotropic wet etching for micro-fabrication
    Nagoya University, Froh, Chikusa, Nagoya, Aichi 464-8603, Japan
    IEEJ Trans. Sens. Micromach., 2008, 9 (341-346):
  • [34] Anisotropic wet etching on birefringent calcite crystal
    Wang, CM
    Chang, YC
    Sung, CD
    Tien, HT
    Lee, CC
    Chang, JY
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (04): : 851 - 854
  • [35] The improvement of wet anisotropic etching with megasonic wave
    Che, WS
    Suk, CG
    Park, TG
    Kim, JT
    Park, JH
    ADVANCES IN FRACTURE AND STRENGTH, PTS 1- 4, 2005, 297-300 : 557 - 561
  • [36] FABRICATION OF NANOSTRUCTURE BY ANISOTROPIC WET ETCHING OF SILICON
    SHIMIZU, K
    ODA, S
    MATSUMURA, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1988, 27 (09): : L1778 - L1779
  • [37] Fabrication of nanostructure by anisotropic wet etching of silicon
    Shimizu, Kazuhiro
    Oda, Shunri
    Matsumura, Masakiyo
    1778, (27):
  • [38] Silicon membranes fabrication by wet anisotropic etching
    Iosub, R
    Moldovan, C
    Modreanu, M
    SENSORS AND ACTUATORS A-PHYSICAL, 2002, 99 (1-2) : 104 - 111
  • [39] Anisotropic wet etching on birefringent calcite crystal
    C.M. Wang
    Y.C. Chang
    C.D. Sung
    H.T. Tien
    C.C. Lee
    J.Y. Chang
    Applied Physics A, 2005, 81 : 851 - 854
  • [40] A masking approach for anisotropic silicon wet etching
    Normand, P
    Beltsios, K
    Tserepi, A
    Aidinis, K
    Tsoukalas, A
    Cardinaud, C
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) : G73 - G76