Simulation of anisotropic wet chemical etching using a physical model

被引:21
|
作者
van Veenendaal, E
Nijdam, AJ
van Suchtelen, J
Sato, K
Gardeniers, JGE
van Enckevort, WJP
Elwenspoek, M
机构
[1] Univ Twente, MESA, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Res Inst, NL-7500 AE Enschede, Netherlands
[3] Univ Nijmegen, Dept Solid State Chem, RIM, NL-6525 ED Nijmegen, Netherlands
[4] Nagoya Univ, Dept Micro Syst Engn, Nagoya, Aichi 4648603, Japan
关键词
anisotropic etching; simulation;
D O I
10.1016/S0924-4247(00)00362-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method to describe the orientation dependence of the etch rate in anisotropic etching solutions of silicon, or any other single crystalline material, by analytical functions. The parameters in these functions have a simple physical meaning. Crystals have a small number of atomically smooth faces, which etch (or grow) slowly as a consequence of the removal (or addition) of atoms by rows and layers. However, smooth faces have a roughening transition (well known in statistical physics) [P. Bennema, Growth and morphology of crystals: integration of theories of Roughning and Hartman-Perdok theorie, in: D.T.J. Hurle (Ed.), Handbook of Crystal Growth, vol. I, Elsevier, Amsterdam (1993) 477; M. Elwenspoek. On the mechanism of anisotropic etching of silicon, J. Electrochem. Sec., 140 (1993) 2075]; at increasing temperature they become rougher, and accordingly, the etch and growth rates increase. Consequently, the basic physical parameters of our functions are the roughness of the smooth faces and the velocity of steps on these faces. We have applied our method to the practical case of etching of silicon in KOH solutions. The maximum deviation between experimental data and simulation using only nine physically meaningful parameters is less than 5% of the maximum etch rate. The method can easily be adapted to describe the growth or etching process of any other crystal. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [1] Simulation of anisotropic wet-chemical etching using a physical model
    van Suchtelen, J
    Sato, K
    van Veenendaal, E
    Nijdam, AJ
    Gardeniers, JGE
    van Enckevort, WJP
    Elwenspoek, M
    MEMS '99: TWELFTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 1999, : 332 - 337
  • [2] Simulation of wet chemical anisotropic etching of silicon
    Pircalaboiu, Adina
    Pascu, A.
    UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 61 (1-2): : 13 - 24
  • [3] Study on atomistic model for simulation of anisotropic wet etching
    Shayan, Mohsen
    Merati, Amir Reza
    Arezoo, Behrooz
    Rezvankhah, Mohamad Amin
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2011, 10 (02):
  • [4] A physical model for silicon anisotropic chemical etching
    Jiang, YF
    Huang, QA
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (06) : 524 - 531
  • [5] Silicon anisotropic wet etching simulation using molecular dynamics
    Kakinaga, T
    Hatai, A
    Tabata, O
    Isono, Y
    Transducers '05, Digest of Technical Papers, Vols 1 and 2, 2005, : 816 - 819
  • [6] Three-dimensional numerical simulation for anisotropic wet chemical etching process
    Lee, J.-G.
    Won, T.
    MOLECULAR SIMULATION, 2007, 33 (07) : 593 - 597
  • [7] Anisotropic wet chemical etching of Si for chemical analysis applications
    Karanassios, V
    Mew, G
    SENSORS AND MATERIALS, 1997, 9 (07) : 395 - 416
  • [8] SIMULATION OF ANISOTROPIC CHEMICAL ETCHING OF CRYSTALLINE SILICON USING A CELLULAR-AUTOMATA MODEL
    THAN, O
    BUTTGENBACH, S
    SENSORS AND ACTUATORS A-PHYSICAL, 1994, 45 (01) : 85 - 89
  • [9] Numerical simulation of wet-chemical etching
    Driesen, CH
    Kuerten, JGM
    Kuiken, HK
    Zandbergen, PJ
    SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 470 - 475
  • [10] Si nanofabrication using AFM field enhanced oxidation and anisotropic wet chemical etching
    Morimoto, K
    Araki, K
    Yamashita, K
    Morita, K
    Niwa, M
    APPLIED SURFACE SCIENCE, 1997, 117 : 652 - 659