Model complexity is an important factor to consider when selecting among Bayesian network models. When all variables are observed, the complexity of a model can be measured by its standard dimension, i.e., the number of linearly independent network parameters. When latent variables are present, however, standard dimension is no longer appropriate and effective dimension should be used instead [Proc. 12th Conf. Uncertainty Artificial Intell. (1996) 283]. Effective dimensions of Bayesian networks are difficult to compute in general. Work has begun to develop efficient methods for calculating the effective dimensions of special networks. One such method has been developed for partially observed trees [J. Artificial Intell. Res. 21 (2004) 1]. In this paper, we develop a similar method for partially observed polytrees. (C) 2004 Elsevier Inc. All rights reserved.
机构:
King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
Awadelkarim, Elsiddig
Jasra, Ajay
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R ChinaKing Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
Jasra, Ajay
Ruzayqat, Hamza
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
机构:
Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harvard Univ, Sch Med, Dept Hlth Care Policy, Boston, MA 02115 USAHarvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Onnela, Jukka-Pekka
Christakis, Nicholas A.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Med, Dept Hlth Care Policy, Boston, MA 02115 USA
Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
Harvard Fac Arts & Sci, Dept Sociol, Cambridge, MA 02138 USAHarvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA