Epitaxial growth of high quality cubic MgZnO films on MgO substrate

被引:31
|
作者
Wang, L. K. [1 ,2 ]
Ju, Z. G. [1 ,2 ]
Shan, C. X. [1 ]
Zheng, J. [1 ,2 ]
Li, B. H. [1 ]
Zhang, Z. Z. [1 ]
Yao, B. [1 ]
Zhao, D. X. [1 ]
Shen, D. Z. [1 ]
Zhang, J. Y. [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Key Lab Excited State Proc, Changchun 130033, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
X-ray diffraction; Cubic structure; Atomic force microscopy; Smooth surface; Metalorganic chemical vapor deposition; MgZnO films; THIN-FILMS; HETEROEPITAXIAL GROWTH; ROOM-TEMPERATURE; ZNO; DEPOSITION; MGXZN1-XO;
D O I
10.1016/j.jcrysgro.2010.01.009
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Epitaxial growth of cubic Mg0.33Zn0.O-67 films on MgO (1 0 0) substrate by metalorganic chemical vapor deposition (MOCVD) was reported. X-ray diffraction (XRD) omega-scans and phi-scans demonstrate the films exhibit single (2 0 0) orientation and highly uniform in-plane orientation with four-fold symmetry. The epitaxial relationship between the layer and substrate is MgZnO (1 0 0)//MgO (1 00). Smooth surface with the rms roughness of 1.8 nm in 5 x 5 mu m area is obtained. Atomic force microscopy (AFM) reveals formation of islands attributed to the strain in the epitaxial MgZnO films. These results demonstrate the high quality single crystal Mg0.33Zn0.67O films and their potential in high-performance deep ultraviolet optoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:875 / 877
页数:3
相关论文
共 50 条
  • [1] Epitaxial growth of ferromagnetic cubic GaCrN on MgO substrate
    Kimura, Shigeya
    Subashchandran, Shanthi
    Zhou, Yi Kai
    Kim, Moo Seong
    Kobayashi, Satoru
    Emura, Shuichi
    Ishimaru, Manabu
    Hirotsu, Yoshihiko
    Hasegawa, Shigehiko
    Asahi, Hajime
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006, 45 (1 A): : 76 - 78
  • [2] Epitaxial growth of ferromagnetic cubic GaCrN on MgO substrate
    Kimura, S
    Subashchandran, S
    Zhou, YK
    Kim, MS
    Kobayashi, S
    Emura, S
    Ishimaru, M
    Hirotsu, Y
    Hasegawa, S
    Asahi, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (1A): : 76 - 78
  • [3] Compliant substrate epitaxial MgZnO films using fluorphlogopite mica approaching homoepitaxy quality
    Chen, Shanshan
    Wang, Ning
    Wang, Yao
    Xie, Qingsong
    Pan, Xinhua
    He, Haiping
    Wang, Fengzhi
    Suo, Huan
    Ye, Zhizhen
    APPLIED SURFACE SCIENCE, 2024, 653
  • [4] Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001) substrate
    Mallik, Srijani
    Chowdhury, Niru
    Bedanta, Subhankar
    AIP ADVANCES, 2014, 4 (09):
  • [5] Influence of MgO(100) substrate surfaces on epitaxial growth of Ti films
    Harada, T
    Ohkoshi, H
    JOURNAL OF CRYSTAL GROWTH, 1997, 173 (1-2) : 109 - 116
  • [6] Epitaxial growth of non-polar ZnO films on MgO substrate
    Perriere, J.
    Jedrecy, N.
    Millon, E.
    Cachoncinlle, C.
    Talbi, A.
    Demange, V.
    Guilloux-Viry, M.
    Nistor, M.
    THIN SOLID FILMS, 2018, 652 : 34 - 38
  • [7] Selected growth of cubic and hexagonal GaN epitaxial films on polar MgO(111)
    Lazarov, VK
    Zimmerman, J
    Cheung, SH
    Li, L
    Weinert, M
    Gajdardziska-Josifovska, M
    PHYSICAL REVIEW LETTERS, 2005, 94 (21)
  • [8] MBE growth of cubic AlN films on MgO substrate via cubic GaN buffer layer
    Kakuda, Masahiro
    Makino, Kenzo
    Ishida, Takashi
    Kuboya, Shigeyuki
    Onabe, Kentaro
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 3-4, 2012, 9 (3-4): : 558 - 561
  • [9] Cubic MgZnO thin films on sapphire substrate: effect of deposition temperature
    Sonmez, Nihan Akin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (04) : 4104 - 4110
  • [10] Cubic MgZnO thin films on sapphire substrate: effect of deposition temperature
    Nihan Akin Sönmez
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 4104 - 4110