Existence of solutions for p(x)-Laplacian Dirichlet problem

被引:787
|
作者
Fan, XL [1 ]
Zhang, QH [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
关键词
p(x)-laplacian; integral functionals; generalized Lebesgue-Sobolev spaces; critical points;
D O I
10.1016/S0362-546X(02)00150-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents several sufficient conditions for the existence of solutions for the Dirichlet problem of p(x)-Laplacian {-div(\delu\ (p(x)-2)delu) = f(x,u), x is an element of Omega, {u = 0, xis an element of partial derivativeOmega. Especially, an existence criterion for infinite many pairs of solutions for the problem is obtained. The discussion is based on the theory of the spaces L-p(x) (Omega) and W-0(1, p(x)) (Omega). (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1843 / 1852
页数:10
相关论文
共 50 条