p(x)-laplacian;
integral functionals;
generalized Lebesgue-Sobolev spaces;
critical points;
D O I:
10.1016/S0362-546X(02)00150-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper presents several sufficient conditions for the existence of solutions for the Dirichlet problem of p(x)-Laplacian {-div(\delu\ (p(x)-2)delu) = f(x,u), x is an element of Omega, {u = 0, xis an element of partial derivativeOmega. Especially, an existence criterion for infinite many pairs of solutions for the problem is obtained. The discussion is based on the theory of the spaces L-p(x) (Omega) and W-0(1, p(x)) (Omega). (C) 2003 Elsevier Science Ltd. All rights reserved.
机构:
Univ Alicante, Dept Anal Matemat, E-03080 Alicante, SpainUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Rossi, Julio D.
de Leon, Sergio Segura
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valencia, Dept Anal Matemat, E-46100 Valencia, SpainUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
de Leon, Sergio Segura
Trombetti, Cristina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy