Existence of radial solutions for a p(x)-Laplacian Dirichlet problem

被引:0
|
作者
Ragusa, Maria Alessandra [1 ,2 ]
Razani, Abdolrahman [3 ]
Safari, Farzaneh [3 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Catania, Italy
[2] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
[3] Imam Khomeini Int Univ, Dept Pure Math, Qazvin 3414916818, Iran
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2021年 / 2021卷 / 01期
关键词
Radial solution; p(x)-Laplacian; Dirichlet boundary condition; Variational principle;
D O I
10.1186/s13662-021-03369-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using variational methods, we prove the existence of at least one positive radial solution for the generalized p(x)-Laplacian problem - Delta(p(x))u + R(x)u(p(x)-2)u = a(x)vertical bar u vertical bar(q(x)-2)u - b(x)vertical bar u vertical bar(r(x)-2)u with Dirichlet boundary condition in the unit ball in R-N (for N >= 3), where a, b, R are radial functions.
引用
收藏
页数:14
相关论文
共 50 条