Dirichlet process mixture models for single-cell RNA-seq clustering

被引:6
|
作者
Adossa, Nigatu A. [1 ,2 ]
Rytkonen, Kalle T. [1 ,2 ,3 ]
Elo, Laura L. [1 ,2 ,4 ]
机构
[1] Univ Turku, Turku Biosci Ctr, FI-20520 Turku, Finland
[2] Abo Akad Univ, FI-20520 Turku, Finland
[3] Univ Turku, Res Ctr Integrat Physiol & Pharmacol, Inst Biomed, FI-20014 Turku, Finland
[4] Univ Turku, Inst Biomed, FI-20014 Turku, Finland
来源
BIOLOGY OPEN | 2022年 / 11卷 / 04期
基金
芬兰科学院;
关键词
Clustering; Hierarchical Dirichlet process (HDP); Latent Dirichlet allocation (LDA); ScRNA-seq; VARIATIONAL INFERENCE; RECONSTRUCTION;
D O I
10.1242/bio.059001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering of cells based on gene expression is one of the major steps in single-cell RNA-sequencing (scRNA-seq) data analysis. One key challenge in cluster analysis is the unknown number of clusters and, for this issue, there is still no comprehensive solution. To enhance the process of defining meaningful cluster resolution, we compare Bayesian latent Dirichlet allocation (LDA) method to its non-parametric counterpart, hierarchical Dirichlet process (HDP) in the context of clustering scRNA-seq data. A potential main advantage of HDP is that it does not require the number of clusters as an input parameter from the user. While LDA has been used in single-cell data analysis, it has not been compared in detail with HDP. Here, we compare the cell clustering performance of LDA and HDP using four scRNA-seq datasets (immune cells, kidney, pancreas and decidua/placenta), with a specific focus on cluster numbers. Using both intrinsic (DB-index) and extrinsic (ARI) cluster quality measures, we show that the performance of LDA and HDP is dataset dependent. We describe a case where HDP produced a more appropriate clustering compared to the best performer from a series of LDA clusterings with different numbers of clusters. However, we also observed cases where the best performing LDA cluster numbers appropriately capture the main biological features while HDP tended to inflate the number of clusters. Overall, our study highlights the importance of carefully assessing the number of clusters when analyzing scRNA-seq data.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husic, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6375 - 6387
  • [32] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [33] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [34] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242
  • [35] Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq
    Zhang, Jesse M.
    Kamath, Govinda M.
    Tse, David N.
    CELL SYSTEMS, 2019, 9 (04) : 383 - +
  • [36] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [37] SC3: Consensus clustering of single-cell RNA-seq data
    Kiselev V.Y.
    Kirschner K.
    Schaub M.T.
    Andrews T.
    Yiu A.
    Chandra T.
    Natarajan K.N.
    Reik W.
    Barahona M.
    Green A.R.
    Hemberg M.
    Nature Methods, 2017, 14 (5) : 483 - 486
  • [38] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [39] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [40] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422