A Chvatal-Erdos type condition for pancyclability

被引:1
|
作者
Flandrin, Evelyne
Li, Hao
Marczyk, Antoni
Wozniak, Mariusz
机构
[1] Univ Paris 11, UMR 8623, LRI, F-91405 Orsay, France
[2] AGH Univ Sci & Technol, Dept Math Appl, PL-30059 Krakow, Poland
关键词
Hamiltonian graphs; pancyclic graphs; cycles; connectivity; independence number; cyclability; pancyclability;
D O I
10.1016/j.disc.2005.11.093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and S a subset of V(G). Let a(S) denote the maximum number of pairwise nonadjacent vertices in the subgraph G(S) of G induced by S. If G(S) is not complete, let K(S) denote the smallest number of vertices separating two vertices of S and K(S) = vertical bar S vertical bar - 1 otherwise. We prove that if alpha(S) <= kappa(S) and vertical bar S vertical bar is large enough (depending on alpha(S)), then G is S-pancyclable, that is contains cycles with exactly p vertices of S for every p, 3 <= p <= vertical bar S vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1463 / 1466
页数:4
相关论文
共 50 条
  • [41] ON A TURAN TYPE PROBLEM OF ERDOS
    FUREDI, Z
    COMBINATORICA, 1991, 11 (01) : 75 - 79
  • [43] Nash-Williams-type and Chvatal-type Conditions in One-Conflict Graphs
    Laforest, Christian
    Momege, Benjamin
    SOFSEM 2015: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2015, 8939 : 327 - 338
  • [44] Erdos-Birch type question in Nr
    Chen, Yong-Gao
    Fang, Jin-Hui
    Hegyvari, Norbert
    JOURNAL OF NUMBER THEORY, 2018, 187 : 233 - 249
  • [45] ON THE EXTENSION OF THE ERDOS-MORDELL TYPE INEQUALITIES
    Malesevic, B.
    Petrovic, M.
    Obradovic, M.
    Popkonstantinovic, B.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 269 - 281
  • [46] ERDOS-TURAN TYPE DISCREPANCY BOUNDS
    GRABNER, PJ
    MONATSHEFTE FUR MATHEMATIK, 1991, 111 (02): : 127 - 135
  • [47] REVERSE INEQUALITIES OF ERDOS-MORDELL TYPE
    Bombardelli, Mea
    Wu, Shanhe
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (02): : 403 - 411
  • [48] Extending an Erdos result on a Romanov type problem
    Ding, Yuchen
    ARCHIV DER MATHEMATIK, 2022, 118 (06) : 587 - 592
  • [49] Erdos-Mordell-type inequalities in a triangle
    Satnoianu, RA
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (08): : 727 - 729
  • [50] A note on an SLLN of Dvoretzky-Erdos Type
    Xie, Jiansheng
    Zhou, Ruisong
    STATISTICS & PROBABILITY LETTERS, 2023, 195