A Chvatal-Erdos type condition for pancyclability

被引:1
|
作者
Flandrin, Evelyne
Li, Hao
Marczyk, Antoni
Wozniak, Mariusz
机构
[1] Univ Paris 11, UMR 8623, LRI, F-91405 Orsay, France
[2] AGH Univ Sci & Technol, Dept Math Appl, PL-30059 Krakow, Poland
关键词
Hamiltonian graphs; pancyclic graphs; cycles; connectivity; independence number; cyclability; pancyclability;
D O I
10.1016/j.disc.2005.11.093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and S a subset of V(G). Let a(S) denote the maximum number of pairwise nonadjacent vertices in the subgraph G(S) of G induced by S. If G(S) is not complete, let K(S) denote the smallest number of vertices separating two vertices of S and K(S) = vertical bar S vertical bar - 1 otherwise. We prove that if alpha(S) <= kappa(S) and vertical bar S vertical bar is large enough (depending on alpha(S)), then G is S-pancyclable, that is contains cycles with exactly p vertices of S for every p, 3 <= p <= vertical bar S vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1463 / 1466
页数:4
相关论文
共 50 条