A Chvatal-Erdos type condition for pancyclability

被引:1
|
作者
Flandrin, Evelyne
Li, Hao
Marczyk, Antoni
Wozniak, Mariusz
机构
[1] Univ Paris 11, UMR 8623, LRI, F-91405 Orsay, France
[2] AGH Univ Sci & Technol, Dept Math Appl, PL-30059 Krakow, Poland
关键词
Hamiltonian graphs; pancyclic graphs; cycles; connectivity; independence number; cyclability; pancyclability;
D O I
10.1016/j.disc.2005.11.093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and S a subset of V(G). Let a(S) denote the maximum number of pairwise nonadjacent vertices in the subgraph G(S) of G induced by S. If G(S) is not complete, let K(S) denote the smallest number of vertices separating two vertices of S and K(S) = vertical bar S vertical bar - 1 otherwise. We prove that if alpha(S) <= kappa(S) and vertical bar S vertical bar is large enough (depending on alpha(S)), then G is S-pancyclable, that is contains cycles with exactly p vertices of S for every p, 3 <= p <= vertical bar S vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1463 / 1466
页数:4
相关论文
共 50 条
  • [1] A CHVATAL-ERDOS TYPE CONDITION FOR HAMILTONIAN GRAPHS
    LU, XY
    JOURNAL OF GRAPH THEORY, 1994, 18 (08) : 791 - 800
  • [2] Chvatal-Erdos condition for hamiltonicity in digraphs
    Guia, C
    Ordaz, O
    ARS COMBINATORIA, 1996, 43 : 272 - 286
  • [3] The Chvatal-Erdos condition for prism-Hamiltonicity
    Ellingham, M. N.
    Nowbandegani, Pouria Salehi
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [4] The Chvatal-Erdos Condition for Group Connectivity in Graphs
    Zhang, Xiaoxia
    Li, Xiangwen
    GRAPHS AND COMBINATORICS, 2014, 30 (03) : 769 - 781
  • [6] Supereulerian graphs and Chvatal-Erdos type conditions
    Yang, Weihua
    He, Wei-Hua
    Li, Hao
    Deng, Xingchao
    ARS COMBINATORIA, 2017, 132 : 183 - 192
  • [7] THE CHVATAL-ERDOS CONDITION AND PANCYCLIC LINE-GRAPHS
    BENHOCINE, A
    FOUQUET, JL
    DISCRETE MATHEMATICS, 1987, 66 (1-2) : 21 - 26
  • [8] A CHVATAL-ERDOS CONDITION FOR AN R-FACTOR IN A GRAPH
    KATERINIS, P
    ARS COMBINATORIA, 1985, 20B : 185 - 191
  • [9] The Chvatal-Erdos condition for supereulerian graphs and the Hamiltonian index
    Han, Longsheng
    Lai, Hong-Jian
    Xiong, Liming
    Yan, Huiya
    DISCRETE MATHEMATICS, 2010, 310 (15-16) : 2082 - 2090
  • [10] The Chvatal-Erdos Condition for a Graph to Have a Spanning Trail
    Tian, Runli
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1739 - 1754