Theoretical models of hot dense plasmas for inertial confinement fusion

被引:3
|
作者
Orlov, NY [1 ]
机构
[1] Inst High Energy Dens, Moscow 127412, Russia
关键词
density functional theory; Rosseland mean free path;
D O I
10.1017/S0263034602204024
中图分类号
O59 [应用物理学];
学科分类号
摘要
Results are presented for a theoretical model, known as the ion model (IM), recently elaborated to calculate the radiative opacity of a hot dense plasma. The density functional theory is used to obtain the general set of self-consistent field equations that describe the state of the whole ensemble of plasma atoms and ions. Theoretical features of the Hartree-Fock-Slater model, the detail configuration account, and the IM are considered. The IM is used for optimal selections of compound chemical compositions for laser and heavy ion target designs.
引用
收藏
页码:547 / 549
页数:3
相关论文
共 50 条
  • [21] Muonic Rydberg states in dense plasmas of inertial confinement interest
    Deutsch, Claude
    Tahir, Naeem A.
    PHYSICS OF PLASMAS, 2021, 28 (11)
  • [22] STARK-BROADENING OF HYDROGENIC HEAVY-IONS IN DENSE INERTIAL-CONFINEMENT FUSION PLASMAS
    HELD, B
    DEUTSCH, C
    GOMBERT, MM
    PHYSICAL REVIEW A, 1984, 29 (02): : 896 - 910
  • [23] First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications
    Hu, S. X.
    Collins, L. A.
    Boehly, T. R.
    Kress, J. D.
    Goncharov, V. N.
    Skupsky, S.
    PHYSICAL REVIEW E, 2014, 89 (04)
  • [24] ENERGETIC CHARGED-FUSION-PRODUCT SLOWING IN INERTIAL CONFINEMENT FUSION PLASMAS
    CHOI, CK
    SUTTON, WR
    MILEY, GH
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 33 (NOV): : 34 - 35
  • [25] Theoretical models of hot dense plasmas for laser and heavy ion target designs.
    Orlov, NY
    LASER INTERACTION WITH MATTER: MEMORIAL TO ACADEMICIAN, NOBEL LAUREATE NG BASOV, 2003, 5228 : 87 - 95
  • [26] Temperature relaxation and generalized Coulomb logarithm in two-temperature dense plasmas relevant to inertial confinement fusion implosions
    Lin, Chengliang
    He, Bin
    Wu, Yong
    Zou, Shiyang
    Wang, Jianguo
    NUCLEAR FUSION, 2023, 63 (10)
  • [27] Characterization of fusion plasmas in the cylindrical DTU inertial electrostatic confinement device
    Rasmussen, J.
    Jensen, T.
    Korsholm, S. B.
    Kihm, N. E.
    Ohms, F. K.
    Gockenbach, M.
    Schmidt, B. S.
    Goss, E.
    PHYSICS OF PLASMAS, 2020, 27 (08)
  • [28] Spectrometry of charged particles from inertial-confinement-fusion plasmas
    Séguin, FH
    Frenje, JA
    Li, CK
    Hicks, DG
    Kurebayashi, S
    Rygg, JR
    Schwartz, BE
    Petrasso, RD
    Roberts, S
    Soures, JM
    Meyerhofer, DD
    Sangster, TC
    Knauer, JP
    Sorce, C
    Glebov, VY
    Stoeckl, C
    Phillips, TW
    Leeper, RJ
    Fletcher, K
    Padalino, S
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (02): : 975 - 995
  • [29] Thomson scattering from inertial-confinement-fusion Hohlraum plasmas
    Glenzer, SH
    Back, CA
    Suter, LJ
    Blain, MA
    Landen, OL
    Lindl, JD
    MacGowan, BJ
    Stone, GF
    Turner, RE
    Wilde, BH
    PHYSICAL REVIEW LETTERS, 1997, 79 (07) : 1277 - 1280
  • [30] Three-dimensional diagnostics and measurements of inertial confinement fusion plasmas
    Schlossberg, D. J.
    Bionta, R. M.
    Casey, D. T.
    Eckart, M. J.
    Fittinghoff, D. N.
    Geppert-Kleinrath, V
    Grim, G. P.
    Hahn, K. D.
    Hartouni, E. P.
    Jeet, J.
    Kerr, S. M.
    Mackinnon, A. J.
    Moore, A. S.
    Volegov, P. L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (05):