Three-dimensional diagnostics and measurements of inertial confinement fusion plasmas

被引:7
|
作者
Schlossberg, D. J. [1 ]
Bionta, R. M. [1 ]
Casey, D. T. [1 ]
Eckart, M. J. [1 ]
Fittinghoff, D. N. [1 ]
Geppert-Kleinrath, V [2 ]
Grim, G. P. [1 ]
Hahn, K. D. [1 ]
Hartouni, E. P. [1 ]
Jeet, J. [1 ]
Kerr, S. M. [1 ]
Mackinnon, A. J. [1 ]
Moore, A. S. [1 ]
Volegov, P. L. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87185 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2021年 / 92卷 / 05期
关键词
Inertial confinement fusion;
D O I
10.1063/5.0043853
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Recent inertial confinement fusion measurements have highlighted the importance of 3D asymmetry effects on implosion performance. One prominent example is the bulk drift velocity of the deuterium-tritium plasma undergoing fusion ("hotspot"), v(HS). Upgrades to the National Ignition Facility neutron time-of-flight diagnostics now provide v(HS) to better than 1 part in 10(4) and enable cross correlations with other measurements. This work presents the impact of v(HS) on the neutron yield, downscatter ratio, apparent ion temperature, electron temperature, and 2D x-ray emission. The necessary improvements to diagnostic suites to take these measurements are also detailed. The benefits of using cross-diagnostic analysis to test hotspot models and theory are discussed, and cross-shot trends are shown. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] LASER DIAGNOSTICS FOR INERTIAL CONFINEMENT FUSION PLASMAS
    BALDIS, HA
    [J]. OPTICAL ENGINEERING, 1982, 21 (04) : 751 - 757
  • [2] LASER DIAGNOSTICS FOR INERTIAL CONFINEMENT FUSION PLASMAS
    BALDIS, HA
    [J]. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1981, 286 : 56 - 64
  • [3] Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
    Frenje, J. A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (02)
  • [4] Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion
    Weber, C. R.
    Clark, D. S.
    Cook, A. W.
    Eder, D. C.
    Haan, S. W.
    Hammel, B. A.
    Hinkel, D. E.
    Jones, O. S.
    Marinak, M. M.
    Milovich, J. L.
    Patel, P. K.
    Robey, H. F.
    Salmonson, J. D.
    Sepke, S. M.
    Thomas, C. A.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (03)
  • [5] Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion
    Waltz, J.
    Canfield, T. R.
    Morgan, N. R.
    Risinger, L. D.
    Wohlbier, J. G.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 267 : 196 - 209
  • [6] Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas
    Guszejnov, D.
    Pokol, G. I.
    Pusztai, I.
    Refy, D.
    Zoletnik, S.
    Lampert, M.
    Nam, Y. U.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (11):
  • [7] Dynamical properties of inertial confinement fusion plasmas
    Kodanova, S. K.
    Ramazanov, T. S.
    Khikmetov, A. K.
    Issanova, M. K.
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 2018, 58 (10) : 946 - 951
  • [8] Opacity profiles in inertial confinement fusion plasmas
    Benredjem, D.
    Pain, J. C.
    Gilleron, F.
    Ferri, S.
    Calisti, A.
    [J]. XXII INTERNATIONAL CONFERENCE ON SPECTRAL LINE SHAPES (ICSLS 2014), 2014, 548
  • [9] Energetics of inertial confinement fusion Hohlraum plasmas
    Glenzer, SH
    Suter, LJ
    Turner, RE
    MacGowan, BJ
    Estabrook, KG
    Blain, MA
    Dixit, SN
    Hammel, BA
    Kauffman, RL
    Kirkwood, RK
    Landen, OL
    Monteil, MC
    Moody, JD
    Orzechowski, TJ
    Pennington, DM
    Stone, GF
    Weiland, TL
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (13) : 2845 - 2848
  • [10] Compton scattering in inertial confinement fusion plasmas
    Rose, SJ
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1996, 55 (06): : 707 - 713