Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

被引:50
|
作者
Weber, C. R. [1 ]
Clark, D. S. [1 ]
Cook, A. W. [1 ]
Eder, D. C. [1 ]
Haan, S. W. [1 ]
Hammel, B. A. [1 ]
Hinkel, D. E. [1 ]
Jones, O. S. [1 ]
Marinak, M. M. [1 ]
Milovich, J. L. [1 ]
Patel, P. K. [1 ]
Robey, H. F. [1 ]
Salmonson, J. D. [1 ]
Sepke, S. M. [1 ]
Thomas, C. A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
TAYLOR INSTABILITY; PHASE;
D O I
10.1063/1.4914157
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400-800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Three-dimensional diagnostics and measurements of inertial confinement fusion plasmas
    Schlossberg, D. J.
    Bionta, R. M.
    Casey, D. T.
    Eckart, M. J.
    Fittinghoff, D. N.
    Geppert-Kleinrath, V
    Grim, G. P.
    Hahn, K. D.
    Hartouni, E. P.
    Jeet, J.
    Kerr, S. M.
    Mackinnon, A. J.
    Moore, A. S.
    Volegov, P. L.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (05):
  • [2] Deceleration phase of inertial confinement fusion implosions
    Betti, R
    Anderson, K
    Goncharov, VN
    McCrory, RL
    Meyerhofer, DD
    Skupsky, S
    Town, RPJ
    [J]. PHYSICS OF PLASMAS, 2002, 9 (05) : 2277 - 2286
  • [3] Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion
    Waltz, J.
    Canfield, T. R.
    Morgan, N. R.
    Risinger, L. D.
    Wohlbier, J. G.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 267 : 196 - 209
  • [4] Implosion hydrodynamics of an inertial confinement fusion target
    Saillard, Y
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2000, 1 (06): : 705 - 718
  • [5] The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions
    Peterson, J. L.
    Michel, P.
    Thomas, C. A.
    Town, R. P. J.
    [J]. PHYSICS OF PLASMAS, 2014, 21 (07)
  • [6] An extended hydrodynamics model for inertial confinement fusion hohlraums
    O. Larroche
    [J]. The European Physical Journal D, 2021, 75
  • [7] An extended hydrodynamics model for inertial confinement fusion hohlraums
    Larroche, O.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2021, 75 (11):
  • [8] Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions
    Weilacher, F.
    Radha, P. B.
    Forrest, C.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (04)
  • [9] Modeling fluid instabilities in inertial confinement fusion hydrodynamics codes
    Zalesak, ST
    Schmitt, AJ
    Velikovich, AL
    Gardner, JH
    [J]. PHYSICS OF PLASMAS, 2005, 12 (05)
  • [10] Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance
    Haines, Brian M.
    Grinstein, Fernando F.
    Fincke, James R.
    [J]. PHYSICAL REVIEW E, 2014, 89 (05):