Functional classification of ornamental stone using machine learning techniques

被引:24
|
作者
Lopez, M. [2 ]
Martinez, J. [1 ]
Matias, J. M. [3 ]
Taboada, J.
Vilan, J. A. [2 ]
机构
[1] Univ Vigo, Dept Environm Engn, Mines Engn Sch, Vigo 36310, Spain
[2] Univ Vigo, Dept Mech Engn, Vigo 36310, Spain
[3] Univ Vigo, Dept Stat, Vigo 36310, Spain
关键词
Approximation and interpolation; Machine learning; Classification; Functional data;
D O I
10.1016/j.cam.2010.01.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Automated classification of granite slabs is a key aspect of the automation of processes in the granite transformation sector. This classification task is currently performed manually on the basis of the subjective opinions of an expert in regard to texture and colour. We describe a classification method based on machine learning techniques fed with spectral information for the rock, supplied in the form of discrete values captured by a suitably parameterized spectrophotometer. The machine learning techniques applied in our research take a functional perspective, with the spectral function smoothed in accordance with the data supplied by the spectrophotometer. On the basis of the results obtained, it can be concluded that the proposed method is suitable for automatically classifying ornamental rock. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1338 / 1345
页数:8
相关论文
共 50 条
  • [21] Classification of Heart Disease Using Machine Learning Techniques
    Rajendran, Perivitta
    Haw, Su-Cheng
    Naveen, Palaichamy
    [J]. 5TH INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGY IN EDUCATION, ICDTE 2021, 2021, : 130 - 135
  • [22] Classification of mysticete sounds using machine learning techniques
    Halkias, Xanadu C.
    Paris, Sebastien
    Glotin, Herve
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 134 (05): : 3496 - 3505
  • [23] Classification of thermally treated wood using machine learning techniques
    Nasir, Vahid
    Nourian, Sepideh
    Avramidis, Stavros
    Cool, Julie
    [J]. WOOD SCIENCE AND TECHNOLOGY, 2019, 53 (01) : 275 - 288
  • [24] Wind turbine contaminant classification using machine learning techniques
    Cummins, S.
    Campbell, J. N.
    Durkan, S. M.
    Somers, J.
    Finnegan, W.
    Goggins, J.
    Hayden, P.
    Murray, R.
    Burke, D.
    Lally, C.
    Alli, M. B.
    Varvarezos, L.
    Costello, J. T.
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2023, 210
  • [25] Malware Classification Approaches Using Machine Learning Techniques: A Review
    Naik, Shivarti
    Dessai, Amita
    [J]. 2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 111 - 117
  • [26] CLASSIFICATION OF RAIL SWITCH DATA USING MACHINE LEARNING TECHNIQUES
    Bryan, Kaylen J.
    Solomon, Mitchell
    Jensen, Emily
    Coley, Christina
    Rajan, Kailas
    Tian, Charlie
    Mijatovic, Nenad
    Kiss, James M.
    Lamoureux, Benjamin
    Dersin, Pierre
    Smith, Anthony O.
    Peter, Adrian M.
    [J]. PROCEEDINGS OF THE ASME JOINT RAIL CONFERENCE, 2018, 2018,
  • [27] hERG liability classification models using machine learning techniques
    Konda L.S.K.
    Keerthi Praba S.
    Kristam R.
    [J]. Computational Toxicology, 2019, 12
  • [28] Classification of rocks radionuclide data using machine learning techniques
    Khan, Abdul Razzaq
    Mir, Adil Aslam
    Saeed, Sharjil
    Rafique, Muhammad
    Asim, Khawaja M.
    Iqbal, Talat
    Jabbar, Abdul
    Rahman, Saeed Ur
    [J]. ACTA GEOPHYSICA, 2018, 66 (05) : 1073 - 1079
  • [29] Using machine learning techniques for exploration and classification of laboratory data
    Trulson, Inga
    Holdenrieder, Stefan
    Hoffmann, Georg
    [J]. JOURNAL OF LABORATORY MEDICINE, 2024,
  • [30] Age Classification in Forensic Medicine Using Machine Learning Techniques
    Zolotenkova, G., V
    Rogachev, A., I
    Pigolkin, Y., I
    Edelev, I. S.
    Borshchevskaya, V. N.
    Cameriere, R.
    [J]. SOVREMENNYE TEHNOLOGII V MEDICINE, 2022, 14 (01) : 15 - 22