Classification of Heart Disease Using Machine Learning Techniques

被引:0
|
作者
Rajendran, Perivitta [1 ]
Haw, Su-Cheng [1 ]
Naveen, Palaichamy [1 ]
机构
[1] Multimedia Univ, Fac Comp & Informat, Jalan Multimedia, Cyberjaya 63100, Malaysia
关键词
Heart Disease; Logistic Regression; Naive Bayes; Random Forest; Artificial Neural Networks;
D O I
10.1145/3488466.3488482
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The most crucial task in the medical field is diagnosing an illness. If a disease is determined at the early stage then many lives can be saved. The purpose of this paper is to use the medical data to predict cardiovascular heart disease using both supervised and unsupervised learning techniques and to show the effects of feature correlation on the classification model with over four different algorithms namely, Logistic Regression, Naive Bayes, Random Forest and Artificial Neural Networks. For the performance assessment, it incorporates F1-score, precision, Area under curve and recall. Overall, Logistic Regression algorithm tends to perform well for both Hungary and Statlog dataset whereas for Cleveland dataset, Artificial Neural Networks performs better than Logistic Regression in terms of accuracy. In terms of area under curve score, Logistic Regression performance is higher in all the dataset compared to Naive Bayes, Random Forest and Artificial Neural Networks. The results tabulated evidently prove that the designed diagnostic system is capable of predicting the risk level of heart disease effectively when compared to other approaches.
引用
收藏
页码:130 / 135
页数:6
相关论文
共 50 条
  • [1] Heart Disease Prognosis Using Machine Learning Classification Techniques
    Chowdhury, Mohammed Nowshad Ruhani
    Ahmed, Ezaz
    Siddik, Md Abu Dayan
    Zaman, Akhlak Uz
    [J]. 2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [2] Heart disease classification using data mining tools and machine learning techniques
    Ilias Tougui
    Abdelilah Jilbab
    Jamal El Mhamdi
    [J]. Health and Technology, 2020, 10 : 1137 - 1144
  • [3] Heart disease classification using data mining tools and machine learning techniques
    Tougui, Ilias
    Jilbab, Abdelilah
    El Mhamdi, Jamal
    [J]. HEALTH AND TECHNOLOGY, 2020, 10 (05) : 1137 - 1144
  • [4] Enhanced Heart Disease Classification Using Parallelization and Integrated Machine-Learning Techniques
    Panda, Subham
    Gupta, Rishik
    Kumar, Chandan
    Mishra, Rashi
    Gupta, Saransh
    Bhardwaj, Akash
    Kumar, Pratiksh
    Shukla, Prakhar
    Kumar, Bagesh
    [J]. COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT III, 2024, 2011 : 411 - 422
  • [5] Skin Disease Classification Using Machine Learning Techniques
    Abir, Mohammad Ashraful Haque
    Anik, Golam Kibria
    Riam, Shazid Hasan
    Karim, Mohammed Ariful
    Tareq, Azizul Hakim
    Rahman, Rashedur M.
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 597 - 608
  • [6] Heart Disease Prediction using Machine Learning Techniques
    Shah D.
    Patel S.
    Bharti S.K.
    [J]. SN Computer Science, 2020, 1 (6)
  • [7] Heart Disease Prediction Using Machine Learning Techniques
    Guruprasad, Sunitha
    Mathias, Valesh Levin
    Dcunha, Winslet
    [J]. 2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 762 - 766
  • [8] Heart Disease Prediction Using Machine Learning Techniques
    Sipail, Herold Sylvestro
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    [J]. 1ST NATIONAL BIOMEDICAL ENGINEERING CONFERENCE (NBEC 2021): ADVANCED TECHNOLOGY FOR MODERN HEALTHCARE, 2021, : 48 - 52
  • [9] Heart Disease Classification Using Machine Learning Models
    Folorunso, Sakinat Oluwabukonla
    Awotunde, Joseph Bamidele
    Adeniyi, Emmanuel Abidemi
    Abiodun, Kazeem Moses
    Ayo, Femi Emmanuel
    [J]. INFORMATICS AND INTELLIGENT APPLICATIONS, 2022, 1547 : 35 - 49
  • [10] Liver Disease Prediction and Classification using Machine Learning Techniques
    Tokala, Srilatha
    Hajarathaiah, Koduru
    Gunda, Sai Ram Praneeth
    Botla, Srinivasrao
    Nalluri, Lakshmikanth
    Nagamanohar, Pathipati
    Anamalamudi, Satish
    Enduri, Murali Krishna
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 871 - 878