Coupled experimental and computational study of residual stresses in additively manufactured Ti-6Al-4V components

被引:59
|
作者
Strantza, M. [1 ]
Ganeriwala, R. K. [2 ]
Clausen, B. [1 ]
Phan, T. Q. [3 ]
Levine, L. E. [3 ]
Pagan, D. [4 ]
King, W. E. [2 ]
Hodge, N. E. [2 ]
Brown, D. W. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[3] NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA
[4] Cornell High Energy Synchrotron Source, 161 Wilson Lab,Synchrotron Dr, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Additive manufacturing; X-ray diffraction; Residual stresses; Thermomechanical modelling; THERMOMECHANICAL MODEL; RIETVELD REFINEMENT; SIMULATION;
D O I
10.1016/j.matlet.2018.07.141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The production of metallic parts via laser-powder bed fusion (L-PBF) additive manufacturing is rapidly growing. To use components produced via L-PBF in safety-critical applications, a high degree of confidence is required in their quality. This qualification can be supported by means of a validated thermomechanical model capable of predicting the final residual stress state and subsequent performance. In this work, we use high-energy X-ray diffraction to determine a three-dimensional residual strain and stress state in a Ti-6Al-4V L-PBF component. The experimental results are used to provide validation of simulations, showing strong quantitative agreement. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 224
页数:4
相关论文
共 50 条
  • [21] Machining of gtaw additively manufactured Ti-6Al-4V structures
    [J]. Palanisamy, S. (spalanisamy@swin.edu.au), 1600, Springer London (99): : 1 - 4
  • [22] Examination of the twinning activity in additively manufactured Ti-6Al-4V
    Zhong, H. Z.
    Zhang, X. Y.
    Wang, S. X.
    Gu, J. F.
    [J]. MATERIALS & DESIGN, 2018, 144 : 14 - 24
  • [23] Machining of GTAW additively manufactured Ti-6Al-4V structures
    N. Hoye
    D. Cuiuri
    R. A. Rahman Rashid
    S. Palanisamy
    [J]. The International Journal of Advanced Manufacturing Technology, 2018, 99 : 313 - 326
  • [24] An experimental investigation into tribological behaviour of additively manufactured biocompatible Ti-6Al-4V alloy
    Madej, Marcin
    Karkalos, Nikolaos E.
    Karmiris-Obratanski, Panagiotis
    Papazoglou, Emmanouil L.
    Georgakopoulos-Soares, Ilias
    Markopoulos, Angelos P.
    [J]. MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 174 - 182
  • [25] Evaluation of residual stresses induced by cold spraying of Ti-6Al-4V on Ti-6Al-4V substrates
    Boruah, Dibakor
    Ahmad, Bilal
    Lee, Tung Lik
    Kabra, Saurabh
    Syed, Abdul Khadar
    McNutt, Philip
    Dore, Matthew
    Zhang, Xiang
    [J]. SURFACE & COATINGS TECHNOLOGY, 2019, 374 : 591 - 602
  • [26] Fracture toughness characteristics of additively manufactured Ti-6Al-4V lattices
    Daynes, Stephen
    Lifton, Joseph
    Lu, Wen Feng
    Wei, Jun
    Feih, Stefanie
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 86
  • [27] Additively manufactured Ti-6Al-4V replacement parts for military aircraft
    Jones, R.
    Raman, R. K. Singh
    Iliopoulos, A. P.
    Michopoulos, J. G.
    Phan, N.
    Peng, D.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2019, 124 : 227 - 235
  • [28] Fatigue Assessment of Wire and Arc Additively Manufactured Ti-6Al-4V
    Springer, Sebastian
    Leitner, Martin
    Gruber, Thomas
    Oberwinkler, Bernd
    Lasnik, Michael
    Grun, Florian
    [J]. METALS, 2022, 12 (05)
  • [29] Electro-strengthening of the additively manufactured Ti-6Al-4V alloy
    Waryoba, Daudi
    Islam, Zahabul
    Reutzel, Ted
    Haque, Aman
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 798
  • [30] Vertical Morphology in Additively Manufactured Ti-6Al-4V: Characterization and Analysis
    Zhang, Yanqin
    Jin, Yu
    Zhao, Guowei
    Li, Wei
    [J]. METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2024, 13 (03) : 488 - 491