Fatigue Assessment of Wire and Arc Additively Manufactured Ti-6Al-4V

被引:8
|
作者
Springer, Sebastian [1 ]
Leitner, Martin [2 ]
Gruber, Thomas [3 ]
Oberwinkler, Bernd [3 ]
Lasnik, Michael [3 ]
Grun, Florian [1 ]
机构
[1] Univ Leoben, Chair Mech Engn, A-8700 Leoben, Austria
[2] Graz Univ Technol, Inst Struct Durabil & Railway Technol, A-8010 Graz, Austria
[3] Voestalpine BOHLER Aerosp GmbH & Co KG, A-8605 Kapfenberg, Austria
关键词
wire arc additive manufacturing; fatigue assessment; Ti-6Al-4V; defects; statistical distribution; MECHANICAL-PROPERTIES; INITIATING DEFECTS; CRACK GROWTH; ALLOY; SIZE; MICROSTRUCTURE; DEPOSITION; STRENGTH; DISTRIBUTIONS; AM;
D O I
10.3390/met12050795
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire and arc additively manufactured (WAAM) parts and structures often present internal defects, such as gas pores, and cause irregularities in the manufacturing process. In order to describe and assess the effect of internal defects in fatigue design, this research study investigates the fatigue strength of wire arc additive manufactured structures covering the influence of imperfections, particularly gas pores. Single pass WAAM structures are manufactured using titanium alloy Ti-6Al-4V and round fatigue, tensile specimen are extracted. Tensile tests and uniaxial fatigue tests with a load stress ratio of R = 0.1 were carried out, whereby fatigue test results are used for further assessments. An extensive fractographic and metallographic fracture surface analysis is utilized to characterize and measure crack-initiating defects. As surface pores as well as bulk pores are detected, a stress intensity equivalent Delta K-eqv transformation approach is presented in this study. Thereby, the defect size of the surface pore is transformed to an increased defect size, which is equivalent to a bulk pore. Subsequently, the fatigue strength assessment method by Tiryakioglu, commonly used for casting processes, is applied. For this method, a cumulative Gumbel extreme value distribution is utilized to statistically describe the defect size. The fitted distribution with modified data reveals a better agreement with the experimental data than unmodified. Additionally, the validation of the model shows that the usage of the Delta K modified data demonstrates better results, with a slight underestimation of up to about -7%, compared to unmodified data, with an overestimation of up to about 14%, comparing the number of load cycles until failure. Hence, the presented approach applying a stress intensity equivalent transformation of surface to bulk pores facilitates a sound fatigue strength assessment of WAAM Ti-6Al-4V structures.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Low-Cycle Fatigue Behavior of Wire and Arc Additively Manufactured Ti-6Al-4V Material
    Springer, Sebastian
    Leitner, Martin
    Gruber, Thomas
    Oberwinkler, Bernd
    Lasnik, Michael
    Gruen, Florian
    MATERIALS, 2023, 16 (18)
  • [2] Fatigue Behaviour of Additively Manufactured Ti-6Al-4V
    Sterling, Amanda
    Shamsaei, Nima
    Torries, Brian
    Thompson, Scott M.
    FATIGUE DESIGN 2015, INTERNATIONAL CONFERENCE PROCEEDINGS, 6TH EDITION, 2015, 133 : 576 - 589
  • [3] A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V
    Fei Cao
    Tiantian Zhang
    Matthew A. Ryder
    Diana A. Lados
    JOM, 2018, 70 : 349 - 357
  • [4] A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V
    Cao, Fei
    Zhang, Tiantian
    Ryder, Matthew A.
    Lados, Diana A.
    JOM, 2018, 70 (03) : 349 - 357
  • [5] On the damping and fatigue characterization of additively manufactured Ti-6Al-4V
    Wilson, Peyton J.
    Azizian-Farsani, Elaheh
    Paul, Mikyle
    Khonsari, Michael M.
    Shao, Shuai
    Shamsaei, Nima
    ADDITIVE MANUFACTURING LETTERS, 2024, 11
  • [6] The effect of loading direction on strain localisation in wire arc additively manufactured Ti-6Al-4V
    Lunt, David
    Ho, Alistair
    Davis, Alec
    Harte, Allan
    Martina, Filomeno
    da Fonseca, Joao Quinta
    Prangnell, Philip
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 788
  • [7] Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement
    McAndrew, Anthony R.
    Rosales, Marta Alvarez
    Colegrove, Paul A.
    Honnige, Jan R.
    Ho, Alistair
    Fayolle, Romain
    Eyitayo, Kamal
    Stan, Ioan
    Sukrongpang, Punyawee
    Crochemore, Antoine
    Pinter, Zsolt
    ADDITIVE MANUFACTURING, 2018, 21 : 340 - 349
  • [8] Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V
    Xie, Yong
    Gao, Ming
    Wang, Fude
    Zhang, Chen
    Hao, Kangda
    Wang, Hongze
    Zeng, Xiaoyan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 709 : 265 - 269
  • [9] Confirmation of rapid-heating β recrystallization in wire-arc additively manufactured Ti-6Al-4V
    Davis, A. E.
    Caballero, A.
    Prangnell, P. B.
    MATERIALIA, 2020, 13
  • [10] Strain controlled fatigue behaviour of a wire plus arc additive manufactured Ti-6Al-4V
    Syed, Abdul Khadar
    Plaskitt, Rob
    Hill, Michelle
    Pinter, Zsolt
    Ding, Jialuo
    Zboray, Robert
    Williams, Stewart
    Zhang, Xiang
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 171