Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrodinger equation

被引:14
|
作者
Chen, Jianqing [1 ]
Guo, Boling
机构
[1] Fujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Pekar-Choquard type system; blow up; strong instability; stationary solutions;
D O I
10.1016/j.amc.2006.07.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that firstly the existence of stationary solutions of the Pekar-Choquard system with the form i (rho) over right arrow (t) + Delta(rho) over right arrow + K((rho) over right arrow) -- vertical bar(rho) over right arrow vertical bar(p-2)(rho) over right arrow = 0, secondly the solutions of Cauchy problem of (PCs) with initial data close to the stationary solution (in a suitable sense) must blow up at finite time; finally the standing wave relating to the stationary solution of (PCs) is strongly unstable in the sense of Definition 4.2. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [21] Existence and nonexistence of blow-up solutions for a Schrodinger equation involving a nonlinear operator
    Zhang, Xinguang
    Wu, Yonghong
    Cui, Yujun
    APPLIED MATHEMATICS LETTERS, 2018, 82 : 85 - 91
  • [22] Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation
    Zhu, Shihui
    Yang, Han
    Zhang, Jian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6186 - 6201
  • [23] On the minimal mass blow-up solutions for the nonlinear Schrodinger equation with Hardy potential
    Pan, Jingjing
    Zhang, Jian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
  • [24] Lpc-concentration of blow-up solutions for the biharmonic nonlinear Schrodinger equation
    Zhu, Shihui
    Zhang, Jian
    Yang, Han
    APPLICABLE ANALYSIS, 2010, 89 (12) : 1827 - 1835
  • [25] On Blow-up Solutions to the 3D Cubic Nonlinear Schrodinger Equation
    Holmer, Justin
    Roudenko, Svetlana
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2007, (01)
  • [26] Well-Posedness and Blow-Up for the Fractional Schrodinger-Choquard Equation
    Tao, Lu
    Zhao, Yajuan
    LI, Yongsheng
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (01): : 82 - 101
  • [27] Blow-up solutions with minimal mass for nonlinear Schrodinger equation with variable potential
    Pan, Jingjing
    Zhang, Jian
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 58 - 71
  • [28] ON COLLAPSING RING BLOW-UP SOLUTIONS TO THE MASS SUPERCRITICAL NONLINEAR SCHRODINGER EQUATION
    Merle, Frank
    Raphael, Pierre
    Szeftel, Jeremie
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (02) : 369 - 431
  • [29] Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrodinger equation
    Akrivis, GD
    Dougalis, VA
    Karakashian, OA
    McKinney, WR
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01): : 186 - 212
  • [30] THE LIMIT OF BLOW-UP DYNAMICS SOLUTIONS FOR A CLASS OF NONLINEAR CRITICAL SCHRODINGER EQUATIONS
    Jean-Jacques, N'takpe
    Blin, L. Boua Sobo
    Halima, Nachid
    Gnowille, Kambire D.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 207 - 238