A skyrmion-based spin-torque nano-oscillator with enhanced edge

被引:38
|
作者
Feng, Youhua [1 ]
Xia, Jing [2 ]
Qiu, Lei [1 ]
Cai, Xinran [2 ,3 ]
Shen, Laichuan [2 ]
Morvan, Francois J. [4 ]
Zhang, Xichao [2 ]
Zhou, Yan [2 ]
Zhao, Guoping [1 ,4 ,5 ]
机构
[1] Sichuan Normal Univ, Coll Phys & Elect Engn, Chengdu 610101, Sichuan, Peoples R China
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
[3] Shenzhen Univ, Coll Phys & Photoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
[4] Chinese Acad Sci, Key Lab Magnet Mat & Devices, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[5] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Skyrmion; Spin-torque nano-oscillator; Spintronics; Micromagnetics; REAL-SPACE OBSERVATION; MICROWAVE EMISSION; PHASE-LOCKING; DRIVEN; DYNAMICS; LATTICE; MOTION; MNSI;
D O I
10.1016/j.jmmm.2019.165610
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The oscillation frequency of the circular skyrmion motion in a nanodisk increases with the driving current density. However, the skyrmion may be destroyed at the nanodisk edge when the driving current density is larger than a threshold, which leads to a maximum oscillation frequency that may not be enough for ultrahigh frequency applications based on skyrmions. In this work, a modified nanodisk structure, in which a skyrmion can be driven by a large current density, is proposed. Numerical simulations demonstrate that when the edge of a ferromagnetic nanodisk has enhanced perpendicular magnetic anisotropy, the upper threshold of the skyrmion oscillation frequency can be increased by 75% compared to the original structure without enhanced edge. Our results may be useful for overcoming the frequency limit of the skyrmion-based spin-torque oscillator, which utilizes the current-induced oscillation of a skyrmion as the source of microwave power.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Magnetization Dynamics in a Quad-Layer Spin-Torque Nano-Oscillator
    Kozynets, Oleh
    Prokopenko, Oleksandr
    2016 II INTERNATIONAL YOUNG SCIENTISTS FORUM ON APPLIED PHYSICS AND ENGINEERING (YSF), 2016, : 132 - 135
  • [22] Chaotic dynamics in a macrospin spin-torque nano-oscillator with delayed feedback
    Williame, Jerome
    Accioly, Artur Difini
    Rontani, Damien
    Sciamanna, Marc
    Kim, Joo-Von
    APPLIED PHYSICS LETTERS, 2019, 114 (23)
  • [23] Spin-torque nano-oscillator based on two in-plane magnetized synthetic ferrimagnets
    Monteblanco, E.
    Garcia-Sanchez, F.
    Romera, M.
    Gusakova, D.
    Buda-Prejbeanu, L. D.
    Ebels, U.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (08)
  • [24] Normal form of nonlinear oscillator model relevant to spin-torque nano-oscillator theory
    Quercia, A.
    d'Aquino, M.
    Scalera, V.
    Perna, S.
    Serpico, C.
    PHYSICA B-CONDENSED MATTER, 2018, 549 : 87 - 90
  • [25] Multifunction spin transfer nano-oscillator based on elliptical skyrmion
    Ma, Yunxu
    Wang, Jianing
    Zeng, Zhaozhuo
    Yuan, Yingyue
    Yang, Jinxia
    Liu, Huibo
    Zhang, Senfu
    Wei, Jinwu
    Wang, Jianbo
    Jin, Chendong
    Liu, Qingfang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 564
  • [26] Temperature effect on a weighted vortex spin-torque nano-oscillator for neuromorphic computing
    Li, Ren
    Rezaeiyan, Yasser
    Bohnert, Tim
    Schulman, Alejandro
    Ferreira, Ricardo
    Farkhani, Hooman
    Moradi, Farshad
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Phase locking of spin-torque nano-oscillator pairs with magnetic dipolar coupling
    Chen, Hao-Hsuan
    Lee, Ching-Ming
    Zhang, Zongzhi
    Liu, Yaowen
    Wu, Jong-Ching
    Horng, Lance
    Chang, Ching-Ray
    PHYSICAL REVIEW B, 2016, 93 (22)
  • [28] Neuromorphic Computing through Time-Multiplexing with a Spin-Torque Nano-Oscillator
    Riou, M.
    Araujo, F. Abreu
    Torrejon, J.
    Tsunegi, S.
    Khalsa, G.
    Querlioz, D.
    Bortolotti, P.
    Cros, V.
    Yakushiji, K.
    Fukushima, A.
    Kubota, H.
    Yuasa, S.
    Stiles, M. D.
    Grollier, J.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [29] A ferromagnetic skyrmion-based nano-oscillator with modified profile of Dzyaloshinskii-Moriya interaction
    Guo, J. H.
    Xia, J.
    Zhang, X. C.
    Pong, Philip W. T.
    Wu, Y.
    Chen, H.
    Zhao, W. S.
    Zhou, Y.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 496
  • [30] Magnetization dynamics in a dual free-layer spin-torque nano-oscillator
    Rowlands, Graham E.
    Krivorotov, Ilya N.
    PHYSICAL REVIEW B, 2012, 86 (09)