Temperature effect on a weighted vortex spin-torque nano-oscillator for neuromorphic computing

被引:1
|
作者
Li, Ren [1 ]
Rezaeiyan, Yasser [1 ]
Bohnert, Tim [2 ]
Schulman, Alejandro [2 ]
Ferreira, Ricardo [2 ]
Farkhani, Hooman [1 ]
Moradi, Farshad [1 ]
机构
[1] Aarhus Univ, Dept Elect & Comp Engn, DK-8200 Aarhus, Denmark
[2] INL Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
D O I
10.1038/s41598-024-60929-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we present fabricated magnetic tunnel junctions (MTJs) that can serve as magnetic memories (MMs) or vortex spin-torque nano-oscillators (STNOs) depending on the device geometry. We explore the heating effect on the devices to study how the performance of a neuromorphic computing system (NCS) consisting of MMs and STNOs can be enhanced by temperature. We further applied a neural network for waveform classification applications. The resistance of MMs represents the synaptic weights of the NCS, while temperature acts as an extra degree of freedom in changing the weights and TMR, as their anti-parallel resistance is temperature sensitive, and parallel resistance is temperature independent. Given the advantage of using heat for such a network, we envision using a vertical-cavity surface-emitting laser (VCSEL) to selectively heat MMs and/or STNO when needed. We found that when heating MMs only, STNO only, or both MMs and STNO, from 25 to 75 degrees C, the output power of the STNO increases by 24.7%, 72%, and 92.3%, respectively. Our study shows that temperature can be used to improve the output power of neural networks, and we intend to pave the way for future implementation of a low-area and high-speed VCSEL-assisted spintronic NCS.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Weighted spin torque nano-oscillator system for neuromorphic computing
    T. Böhnert
    Y. Rezaeiyan
    M. S. Claro
    L. Benetti
    A. S. Jenkins
    H. Farkhani
    F. Moradi
    R. Ferreira
    Communications Engineering, 2 (1):
  • [2] Neuromorphic Computing through Time-Multiplexing with a Spin-Torque Nano-Oscillator
    Riou, M.
    Araujo, F. Abreu
    Torrejon, J.
    Tsunegi, S.
    Khalsa, G.
    Querlioz, D.
    Bortolotti, P.
    Cros, V.
    Yakushiji, K.
    Fukushima, A.
    Kubota, H.
    Yuasa, S.
    Stiles, M. D.
    Grollier, J.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [3] Skyrmion based spin-torque nano-oscillator
    Das, Debasis
    Muralidharan, Bhaskaran
    Tulapurkar, Ashwin
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 491
  • [4] Chaos suppression in a spin-torque nano-oscillator
    Xu, H. Z.
    Chen, X.
    Liu, J. -M.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (09)
  • [5] Granular vortex spin-torque nano oscillator for reservoir computing
    Shreya, S.
    Jenkins, A. S.
    Rezaeiyan, Y.
    Li, R.
    Bohnert, T.
    Benetti, L.
    Ferreira, R.
    Moradi, F.
    Farkhani, H.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Granular vortex spin-torque nano oscillator for reservoir computing
    S. Shreya
    A. S. Jenkins
    Y. Rezaeiyan
    R. Li
    T. Böhnert
    L. Benetti
    R. Ferreira
    F. Moradi
    H. Farkhani
    Scientific Reports, 13
  • [7] A skyrmion-based spin-torque nano-oscillator
    Garcia-Sanchez, F.
    Sampaio, J.
    Reyren, N.
    Cros, V.
    Kim, J-V
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [8] Spin-Torque Nano-Oscillator as a Microwave Signal Source
    Prokopenko, Oleksandr
    Bankowski, Elena
    Meitzler, Thomas
    Tiberkevich, Vasil
    Slavin, Andrei
    IEEE MAGNETICS LETTERS, 2011, 2
  • [9] Stability Analysis of Spin-Torque Nano-Oscillator in the Rotating Frame
    Chen, HaoHsuan
    Zeng, Lang
    Lee, ChingMing
    Zhao, Weisheng
    SPIN, 2019, 9 (03)
  • [10] Amplitude-phase coupling in a spin-torque nano-oscillator
    Kudo, Kiwamu
    Nagasawa, Tazumi
    Sato, Rie
    Mizushima, Koichi
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)