Fractal interpolation functions for random data sets

被引:16
|
作者
Luor, Dah-Chin [1 ]
机构
[1] I Shou Univ, Dept Financial & Computat Math, 1,Sec 1,Syuecheng Rd, Kaohsiung 84001, Taiwan
关键词
Fractals; Interpolation; Fractal interpolation functions; Random data sets; ITERATED FUNCTION SYSTEMS; POLYNOMIAL INTERPOLATION; DISCRETE SEQUENCES; APPROXIMATION; SIGNALS; SAMPLES;
D O I
10.1016/j.chaos.2018.06.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x(0) < x(1) < x(2) < ... < x(N) and I = [x(0,) x(N)]. Let u be a continuous function defined on I and let Delta(mu) = {(x(k), mu(k)) : k = 0, 1,..., N}, where mu(k) = u(x(k)). We establish a fractal interpolation function f((T mu)) on I corresponding to the set of points Delta(mu). Let Y-k be a random perturbation of mu(k) and set Delta(Y) = {(x(k), Y-k) : k = 0, 1,..., N}. By a similar way, we construct a fractal interpolation function f((Ty)) on I corresponding to the set Delta(Y). f((Ty)) (x) is a random variable for any x is an element of I, and the function f((Ty)) can be treated as a fractal perturbation of u under some random noise in the set of interpolation points Delta mu. In this article we investigate some statistical properties of f((Ty)) and give estimations of the difference between f((Ty)) and u. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:256 / 263
页数:8
相关论文
共 50 条
  • [31] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [32] Multifractal analysis of fractal interpolation functions
    Priyanka, T.M.C.
    Gowrisankar, A.
    [J]. Physica Scripta, 2024, 99 (11)
  • [33] On the integral transform of fractal interpolation functions
    Agathiyan, A.
    Gowrisankar, A.
    Fataf, Nur Aisyah Abdul
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 222 : 209 - 224
  • [34] Energy and Laplacian of fractal interpolation functions
    Li Xiao-hui
    Ruan Huo-jun
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (02) : 201 - 210
  • [35] Wavelets are piecewise fractal interpolation functions
    Hardin, DP
    [J]. FRACTALS IN MULTIMEDIA, 2002, 132 : 121 - 135
  • [36] Energy and Laplacian of fractal interpolation functions
    Xiao-hui Li
    Huo-jun Ruan
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 201 - 210
  • [37] Radial basis functions for the multivariate interpolation of large scattered data sets
    Lazzaro, D
    Montefusco, LB
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) : 521 - 536
  • [38] MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS: SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL INTERPOLATION OPERATOR
    Pandey K.K.
    Viswanathan P.V.
    [J]. Electronic Transactions on Numerical Analysis, 2022, 55 : 627 - 651
  • [39] INTERPOLATION OF FUNCTIONS ON RANDOM NETWORKS
    MATVEEV, OV
    [J]. DOKLADY AKADEMII NAUK, 1994, 339 (05) : 594 - 597
  • [40] Approximation by the linear fractal interpolation functions with the same fractal dimension
    Liang, Y. S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1071 - 1076