Equidistribution of dense subgroups on nilpotent Lie groups

被引:8
|
作者
Breuillard, Emmanuel [1 ]
机构
[1] Ecole Polytech, F-91128 Palaiseau, France
关键词
UNIFORM-DISTRIBUTION; POINTS;
D O I
10.1017/S0143385709000091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma be a dense subgroup of a simply connected nilpotent Lie group G generated by a finite symmetric set S. We consider the n-ball S-n for the word metric induced by S on Gamma. We show that S-n (with uniform measure) becomes equidistributed on G with respect to the Haar measure as n tends to infinity. We also prove the analogous result for random walk averages.
引用
收藏
页码:131 / 150
页数:20
相关论文
共 50 条
  • [31] APPROXIMATE MULTIPLICATIVE GROUPS IN NILPOTENT LIE GROUPS
    Fisher, David
    Katz, Nets Hawk
    Peng, Irine
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (05) : 1575 - 1580
  • [32] Finite groups with a system of nilpotent subgroups
    Li, SR
    Dark, RS
    ALGEBRA COLLOQUIUM, 2005, 12 (02) : 199 - 204
  • [33] On groups covered by locally nilpotent subgroups
    Detomi, Eloisa
    Morigi, Marta
    Shumyatsky, Pavel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (04) : 1525 - 1535
  • [34] Approximate subgroups of residually nilpotent groups
    Matthew C. H. Tointon
    Mathematische Annalen, 2019, 374 : 499 - 515
  • [35] On groups with nilpotent by Černikov proper subgroups
    Franco Napolitani
    Elisabetta Pegoraro
    Archiv der Mathematik, 1997, 69 : 89 - 94
  • [36] Generation of finite groups by nilpotent subgroups
    Damian, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (01): : 245 - 255
  • [37] NILPOTENT SUBGROUPS OF MULTIPLICATIVE GROUPS OF FIELDS
    BERNARD, CL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (19): : 1129 - 1130
  • [38] NILPOTENT SUBGROUPS OF FINITE SOLUBLE GROUPS
    HEINEKEN, H
    ARCHIV DER MATHEMATIK, 1991, 56 (05) : 417 - 423
  • [39] On groups with nilpotent by Cernikov proper subgroups
    Napolitani, F
    Pegoraro, E
    ARCHIV DER MATHEMATIK, 1997, 69 (02) : 89 - 94
  • [40] On finite groups factorized by σ-nilpotent subgroups
    Wu, Zhenfeng
    Zhang, Chi
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1785 - 1791