On groups with nilpotent by Černikov proper subgroups

被引:0
|
作者
Franco Napolitani
Elisabetta Pegoraro
机构
[1] Dipartimento di Matematica Pura ed Applicata,
[2] Università di Padova,undefined
[3] Via Belzoni 7,undefined
[4] I-35131 Padova,undefined
[5] Italy,undefined
来源
Archiv der Mathematik | 1997年 / 69卷
关键词
Proper Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study locally graded groups in which all proper subgroups are nilpotent by Černikov. We prove that such groups are nilpotent by Černikov or periodic. Moreover, a locally graded group is abelian by Černikov if and only if every proper subgroup is abelian by Černikov.
引用
收藏
页码:89 / 94
页数:5
相关论文
共 50 条
  • [1] On groups with nilpotent by Cernikov proper subgroups
    Napolitani, F
    Pegoraro, E
    ARCHIV DER MATHEMATIK, 1997, 69 (02) : 89 - 94
  • [2] A NOTE ON GROUPS WITH NILPOTENT-BY-FINITE PROPER SUBGROUPS
    BRUNO, B
    PHILLIPS, RE
    ARCHIV DER MATHEMATIK, 1995, 65 (05) : 369 - 374
  • [3] Groups whose proper subgroups are finite-by-nilpotent
    Xu, MQ
    ARCHIV DER MATHEMATIK, 1996, 66 (05) : 353 - 359
  • [4] Linear groups whose proper subgroups are close to being nilpotent
    de Giovanni, F.
    Trombetti, M.
    Wehrfritz, B. A. F.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (07) : 3020 - 3033
  • [5] Groups with all proper subgroups nilpotent-by-finite rank
    M. R. Dixon
    M. J. Evans
    H. Smith
    Archiv der Mathematik, 2000, 75 : 81 - 91
  • [6] ON PARA-GROUPS WITH NILPOTENT-BY-FINITE PROPER SUBGROUPS
    BRUNO, B
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1989, 3A (01): : 45 - 51
  • [7] Groups with all proper subgroups (finite rank)-by-nilpotent
    Dixon, MR
    Evans, MJ
    Smith, H
    ARCHIV DER MATHEMATIK, 1999, 72 (05) : 321 - 327
  • [8] Groups with all proper subgroups nilpotent-by-finite rank
    Dixon, MR
    Evans, MJ
    Smith, H
    ARCHIV DER MATHEMATIK, 2000, 75 (02) : 81 - 91
  • [9] Groups with all proper subgroups (finite rank)-by-nilpotent
    Martyn R. Dixon
    Martin J. Evans
    Howard Smith
    Archiv der Mathematik, 1999, 72 : 321 - 327
  • [10] Groups with all proper subgroups (finite rank)-by-nilpotent. II
    Dixon, MR
    Evans, MJ
    Smith, H
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 1183 - 1190