ON THE STABILIZATION SIZE OF SEMI-IMPLICIT FOURIER-SPECTRAL METHODS FOR 3D CAHN-HILLIARD EQUATIONS

被引:33
|
作者
Li, Dong [1 ,2 ]
Qiao, Zhonghua [3 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Cahn-Hilliard; energy stable; large time stepping; semi-implicit; UNCONDITIONALLY STABLE SCHEMES; TIME-STEPPING STRATEGY; PHASE-FIELD MODELS; THIN-FILM EPITAXY; DIFFERENCE SCHEME; GRADIENT FLOWS; ALLEN-CAHN; ENERGY; ACCURATE;
D O I
10.4310/CMS.2017.v15.n6.a1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stabilized semi-implicit time-stepping method is an efficient algorithm to simulate phased field problems with fourth order dissipation. We consider the 3D Cahn-Hilliard equation and prove unconditional energy stability of the corresponding stabilized semi-implicit Fourier spectral scheme independent of the time step. We do not impose any Lipschitz-type assumption on the non linearity. It is shown that the size of the stabilization term depends only on the initial data and the diffusion coefficient. Unconditional Sobolev bounds of the numerical solution are obtained and the corresponding error analysis under nearly optimal regularity assumptions is established.
引用
收藏
页码:1489 / 1506
相关论文
共 50 条
  • [41] Efficient solution on solving 3D Maxwell equations using stable semi-implicit splitting method
    Cen, Wei
    Gu, Ning
    AIP ADVANCES, 2016, 6 (05):
  • [42] Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations Numerical implementation
    Zhang, Guo-Dong
    He, Yinnian
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (08) : 1912 - 1923
  • [43] 3D Interactive Segmentation With Semi-Implicit Representation and Active Learning
    Deng, Jingjing
    Xie, Xianghua
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9402 - 9417
  • [44] A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations
    Zhang, Hui
    Jiang, Xiaoyun
    Zeng, Fanhai
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 405
  • [45] Gradient-SDF: A Semi-Implicit Surface Representation for 3D Reconstruction
    Sommer, Christiane
    Sang, Lu
    Schubert, David
    Cremers, Daniel
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6270 - 6279
  • [46] High order semi-implicit schemes for viscous compressible flows in 3D
    Boscheri, Walter
    Tavelli, Maurizio
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 434
  • [47] A conservative finite difference scheme for the N-component Cahn-Hilliard system on curved surfaces in 3D
    Yang, Junxiang
    Li, Yibao
    Lee, Chaeyoung
    Jeong, Darae
    Kim, Junseok
    JOURNAL OF ENGINEERING MATHEMATICS, 2019, 119 (01) : 149 - 166
  • [48] 3D pattern formation from coupled Cahn-Hilliard and Swift-Hohenberg equations: Morphological phases transitions of polymers, bock and diblock copolymers
    Martinez-Agustin, F.
    Ruiz-Salgado, S.
    Zenteno-Mateo, B.
    Rubio, E.
    Morales, M. A.
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [49] Nonconvex Mixed TV/Cahn-Hilliard Functional for Super-Resolution/Segmentation of 3D Trabecular Bone Images
    Li, Y.
    Sixou, B.
    Peyrin, F.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (04) : 504 - 514
  • [50] SUPER-RESOLUTION/SEGMENTATION OF 3D TRABECULAR BONE IMAGES WITH TOTAL VARIATION AND NONCONVEX CAHN-HILLIARD FUNCTIONAL
    Li, Yufei
    Sixou, Bruno
    Burghardt, Andrew
    Peyrin, Francois
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1193 - 1196