ON THE STABILIZATION SIZE OF SEMI-IMPLICIT FOURIER-SPECTRAL METHODS FOR 3D CAHN-HILLIARD EQUATIONS

被引:33
|
作者
Li, Dong [1 ,2 ]
Qiao, Zhonghua [3 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Cahn-Hilliard; energy stable; large time stepping; semi-implicit; UNCONDITIONALLY STABLE SCHEMES; TIME-STEPPING STRATEGY; PHASE-FIELD MODELS; THIN-FILM EPITAXY; DIFFERENCE SCHEME; GRADIENT FLOWS; ALLEN-CAHN; ENERGY; ACCURATE;
D O I
10.4310/CMS.2017.v15.n6.a1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stabilized semi-implicit time-stepping method is an efficient algorithm to simulate phased field problems with fourth order dissipation. We consider the 3D Cahn-Hilliard equation and prove unconditional energy stability of the corresponding stabilized semi-implicit Fourier spectral scheme independent of the time step. We do not impose any Lipschitz-type assumption on the non linearity. It is shown that the size of the stabilization term depends only on the initial data and the diffusion coefficient. Unconditional Sobolev bounds of the numerical solution are obtained and the corresponding error analysis under nearly optimal regularity assumptions is established.
引用
收藏
页码:1489 / 1506
相关论文
共 50 条
  • [31] Extension Criterion to the 3D Navier–Stokes–Cahn–Hilliard equations
    Juan Du
    Fan Wu
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [32] On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: Approximation and long time behaviour
    Segatti, Antonio
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (03): : 411 - 437
  • [33] Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations
    Guo, Ruihan
    Xia, Yinhua
    Xu, Yan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 338 : 269 - 284
  • [34] Baroclinic stability for a family of two-level, semi-implicit numerical methods for the 3D shallow water equations
    Rueda, Francisco J.
    Sanmiguel-Rojas, Enrique
    Hodges, Ben R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (03) : 237 - 268
  • [35] A parallel semi-implicit method for 3D nonlinear magnetohydrodynamics
    Meijer, PM
    Poedts, S
    Goedbloed, JP
    Jakoby, A
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1995, 919 : 170 - 175
  • [36] Semi-implicit 3D SPH on GPU for lava flows
    Zago, Vito
    Bilotta, Giuseppe
    Herault, Alexis
    Dalrymple, Robert A.
    Fortuna, Luigi
    Cappello, Annalisa
    Ganci, Gaetana
    Del Negro, Ciro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 854 - 870
  • [37] Semi-implicit covolume method in 3D image segmentation
    Corsaro, S.
    Mikula, K.
    Sarti, A.
    Sgallari, F.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (06): : 2248 - 2265
  • [38] Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem
    Wodo, Olga
    Ganapathysubramanian, Baskar
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (15) : 6037 - 6060
  • [39] Regularity results and optimal velocity control of the convective nonlocal Cahn-Hilliard equation in 3D
    Poiatti, Andrea
    Signori, Andrea
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [40] Extension Criterion to the 3D Navier-Stokes-Cahn-Hilliard equations
    Du, Juan
    Wu, Fan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)