Data-driven approaches to the modelling of bioprocesses

被引:9
|
作者
Bernaerts, K [1 ]
Van Impe, JF [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, B-3001 Heverlee, Belgium
关键词
bioprocess modelling; data collection; Fisher information matrix; optimal experiment design; parameter estimation; system identification;
D O I
10.1191/0142331204tm127oa
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bioprocess modelling presents a challenging subject, which requires a meticulous modelling strategy. During the modelling process, experimental data form a key ingredient during structure characterization and parameter estimation. Accurate system identification can only be guaranteed if the experimental data contain sufficient information on the process dynamics. In this respect, sufficient effort should be spent on optimal experiment design in order to maximize the information that can be extracted from data, particularly because experimental data generation for bioprocesses is usually a time-consuming, labour-intensive and costly job. This paper reviews the modelling cycle of bioprocesses, emphasizing the need for careful experimental data collection. The concepts of optimal experiment design for parameter estimation are outlined in particular. Application of this methodology is illustrated for a case study involving the optimal estimation of two model parameters describing temperature dependence of microbial growth kinetics.
引用
收藏
页码:349 / 372
页数:24
相关论文
共 50 条
  • [21] Data-Driven Modelling of Wind Turbines
    van der Veen, Gijs
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 72 - 77
  • [22] Data-driven ESP modelling and optimisation
    Toimil, Daniel
    Gomez, Alberto
    Andres, Sara M.
    JOURNAL OF AEROSOL SCIENCE, 2014, 70 : 59 - 66
  • [23] Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
    Mount, N. J.
    Dawson, C. W.
    Abrahart, R. J.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (07) : 2827 - 2843
  • [24] Data-driven Modelling of Electromagnetic Interferences in Motor Vehicles Using Intelligent System Approaches
    Petrovski, Sergei
    Bouchet, Frederic
    Petrovski, Andrei
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (IEEE INISTA), 2013,
  • [25] Deterministic drag modelling for spherical particles in Stokes regime using data-driven approaches
    Elmestikawy, Hani
    Reuter, Julia
    Evrard, Fabien
    Mostaghim, Sanaz
    van Wachem, Berend
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 178
  • [26] Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
    Cheng Fan
    Da Yan
    Fu Xiao
    Ao Li
    Jingjing An
    Xuyuan Kang
    Building Simulation, 2021, 14 : 3 - 24
  • [27] Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
    Fan, Cheng
    Yan, Da
    Xiao, Fu
    Li, Ao
    An, Jingjing
    Kang, Xuyuan
    BUILDING SIMULATION, 2021, 14 (01) : 3 - 24
  • [28] Measurement uncertainty, data quality and data-driven modelling
    Sommer, Klaus-Dieter
    Schuetze, Andreas
    TM-TECHNISCHES MESSEN, 2024, 91 (09) : 417 - 418
  • [29] Data-driven approaches in the investigation of social perception
    Adolphs, Ralph
    Nunnmenmaa, Lauri
    Todorov, Alexander
    Haxby, James V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1693)
  • [30] DATA-DRIVEN APPROACHES TO LEARN HYCHEM MODELS
    Ji, Weiqi
    Zanders, Julian
    Park, Ji-Woong
    Deng, Sili
    PROCEEDINGS OF ASME 2021 INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF2021), 2021,