Data-driven approaches to the modelling of bioprocesses

被引:9
|
作者
Bernaerts, K [1 ]
Van Impe, JF [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, B-3001 Heverlee, Belgium
关键词
bioprocess modelling; data collection; Fisher information matrix; optimal experiment design; parameter estimation; system identification;
D O I
10.1191/0142331204tm127oa
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bioprocess modelling presents a challenging subject, which requires a meticulous modelling strategy. During the modelling process, experimental data form a key ingredient during structure characterization and parameter estimation. Accurate system identification can only be guaranteed if the experimental data contain sufficient information on the process dynamics. In this respect, sufficient effort should be spent on optimal experiment design in order to maximize the information that can be extracted from data, particularly because experimental data generation for bioprocesses is usually a time-consuming, labour-intensive and costly job. This paper reviews the modelling cycle of bioprocesses, emphasizing the need for careful experimental data collection. The concepts of optimal experiment design for parameter estimation are outlined in particular. Application of this methodology is illustrated for a case study involving the optimal estimation of two model parameters describing temperature dependence of microbial growth kinetics.
引用
收藏
页码:349 / 372
页数:24
相关论文
共 50 条
  • [1] Hybrid metabolic flux analysis/data-driven modelling of bioprocesses
    Teixeira, A.
    Alves, C. M. L.
    Alves, P. M.
    Carrondo, M. J. T.
    Oliveira, R.
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 1667 - 1672
  • [2] Data-Driven Modelling: Concepts, Approaches and Experiences
    Solomatine, D.
    See, L. M.
    Abrahart, R. J.
    PRACTICAL HYDROINFORMATICS: COMPUTATIONAL INTELLIGENCE AND TECHNOLOGICAL DEVELOPMENTS IN WATER APPLICATIONS, 2008, 68 : 17 - +
  • [3] A review on data-driven approaches for industrial process modelling
    Guo, Wei
    Pan, Tianhong
    Li, Zhengming
    Li, Guoquan
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2020, 34 (02) : 75 - 89
  • [4] Data-driven modelling: some past experiences and new approaches
    Solomatine, Dimitri P.
    Ostfeld, Avi
    JOURNAL OF HYDROINFORMATICS, 2008, 10 (01) : 3 - 22
  • [5] Data-driven approaches to rainfall nowcasting for application in hydrological modelling
    Mhedhbi, Rim
    Erechtchoukova, Marina G.
    Proceedings of the International Congress on Modelling and Simulation, MODSIM, 2021, : 295 - 301
  • [6] Data-driven approaches for estimating uncertainty in rainfall-runoff modelling
    Shrestha, Durga Lal
    Solomatine, Dimitri P.
    INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2008, 6 (02) : 109 - 122
  • [7] Impact of Data-Driven Modelling Approaches on the Analysis of Active Distribution Networks
    Lamprianidou, Ifigeneia S.
    Papadopoulos, Theofilos A.
    Kryonidis, Georgios C.
    Papagiannis, Grigoris K.
    Bouhouras, Aggelos S.
    2019 54TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2019,
  • [8] The rise of data-driven modelling
    不详
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 383 - 383
  • [9] The rise of data-driven modelling
    Nature Reviews Physics, 2021, 3 : 383 - 383
  • [10] Comparison of physics-based and data-driven modelling techniques for dynamic optimisation of fed-batch bioprocesses
    Del Rio-Chanona, Ehecatl Antonio
    Ahmed, Nur Rashid
    Wagner, Jonathan
    Lu, Yinghua
    Zhang, Dongda
    Jing, Keju
    BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (11) : 2971 - 2982