ON THE BANDED TOEPLITZ STRUCTURED DISTANCE TO SYMMETRIC POSITIVE SEMIDEFINITENESS

被引:0
|
作者
Noschese, Silvia [1 ]
Reichel, Lothar [2 ]
机构
[1] SAPIENZA Univ Roma, Dipartimento Matemat Guido Castelnuovo, Ple Moro 2, I-00185 Rome, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
来源
关键词
Matrix nearness problem; Toeplitz structure; Symmetric positive definite matrix; Structured distance; Banded Toeplitz matrix; PRECONDITIONING STRATEGIES; NORMAL MATRICES; EIGENVALUES; SYSTEMS; DEPARTURE; NORMALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the determination of a close real banded positive definite Toeplitz matrix in the Frobenius norm to a given square real banded matrix. While it is straightforward to determine the closest banded Toeplitz matrix to a given square matrix, the additional requirement of positive definiteness makes the problem difficult. We review available theoretical results and provide a simple approach to determine a banded positive definite Toeplitz matrix.
引用
收藏
页码:266 / 279
页数:14
相关论文
共 50 条
  • [21] Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?
    Fayyaz Ahmad
    Eman Salem Al-Aidarous
    Dina Abdullah Alrehaili
    Sven-Erik Ekström
    Isabella Furci
    Stefano Serra-Capizzano
    Numerical Algorithms, 2018, 78 : 867 - 893
  • [22] A parallel structured banded DC algorithm for symmetric eigenvalue problems
    Li, Shengguo
    Liao, Xia
    Lu, Yutong
    Roman, Jose E.
    Yue, Xiaoqiang
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2023, 5 (02) : 116 - 128
  • [23] Fast algorithm for solving block banded Toeplitz systems with banded Toeplitz blocks
    Reeves, SJ
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3325 - 3328
  • [24] A parallel structured banded DC algorithm for symmetric eigenvalue problems
    Shengguo Li
    Xia Liao
    Yutong Lu
    Jose E. Roman
    Xiaoqiang Yue
    CCF Transactions on High Performance Computing, 2023, 5 : 116 - 128
  • [25] A note on the positive semidefiniteness of Aα(G)
    Nikiforov, Vladimir
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 156 - 163
  • [26] Fast direct solution methods for symmetric banded Toeplitz systems, based on the sine transform
    Hendrickx, J
    Van Barel, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 343 : 211 - 232
  • [27] Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices
    Sven-Erik Ekström
    Isabella Furci
    Stefano Serra-Capizzano
    BIT Numerical Mathematics, 2018, 58 : 937 - 968
  • [28] Fast direct solution methods for symmetric banded Toeplitz systems, based on the sine transform
    Hendrickx, Jef
    Van Barel, Marc
    Linear Algebra and Its Applications, 2002, 343 : 211 - 232
  • [29] Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices
    Ekstrom, Sven-Erik
    Furci, Isabella
    Serra-Capizzano, Stefano
    BIT NUMERICAL MATHEMATICS, 2018, 58 (04) : 937 - 968
  • [30] Fast direct solution methods for symmetric banded Toeplitz systems, based on the sine transform
    Hendrickx, Jef
    Van, Barel, Marc
    Linear Algebra and Its Applications, 2002, 343-344 : 211 - 232