Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices

被引:0
|
作者
Sven-Erik Ekström
Isabella Furci
Stefano Serra-Capizzano
机构
[1] Uppsala University,Department of Information Technology, Division of Scientific Computing, ITC
[2] University of Insubria,Department of Science and High Technology
来源
BIT Numerical Mathematics | 2018年 / 58卷
关键词
Eigenvalues; Asymptotic eigenvalue expansion; Polynomial interpolation; Extrapolation; Block matrices; MSC 15B05; MSC 65F15; MSC 65D05; MSC 65B05;
D O I
暂无
中图分类号
学科分类号
摘要
Precise asymptotic expansions for the eigenvalues of a Toeplitz matrix Tn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n(f)$$\end{document}, as the matrix size n tends to infinity, have recently been obtained, under suitable assumptions on the associated generating function f. A restriction is that f has to be polynomial, monotone, and scalar-valued. In this paper we focus on the case where f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {f}$$\end{document} is an s×s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\times s$$\end{document} matrix-valued trigonometric polynomial with s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document}, and Tn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n(\mathbf {f})$$\end{document} is the block Toeplitz matrix generated by f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {f}$$\end{document}, whose size is N(n,s)=sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(n,s)=sn$$\end{document}. The case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} corresponds to that already treated in the literature. We numerically derive conditions which ensure the existence of an asymptotic expansion for the eigenvalues. Such conditions generalize those known for the scalar-valued setting. Furthermore, following a proposal in the scalar-valued case by the first author, Garoni, and the third author, we devise an extrapolation algorithm for computing the eigenvalues of banded symmetric block Toeplitz matrices with a high level of accuracy and a low computational cost. The resulting algorithm is an eigensolver that does not need to store the original matrix, does not need to perform matrix-vector products, and for this reason is called matrix-less. We use the asymptotic expansion for the efficient computation of the spectrum of special block Toeplitz structures and we provide exact formulae for the eigenvalues of the matrices coming from the Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}_p$$\end{document} Lagrangian Finite Element approximation of a second order elliptic differential problem. Numerical results are presented and critically discussed.
引用
收藏
页码:937 / 968
页数:31
相关论文
共 46 条
  • [1] Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices
    Ekstrom, Sven-Erik
    Furci, Isabella
    Serra-Capizzano, Stefano
    BIT NUMERICAL MATHEMATICS, 2018, 58 (04) : 937 - 968
  • [2] A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices
    Sven-Erik Ekström
    Carlo Garoni
    Numerical Algorithms, 2019, 80 : 819 - 848
  • [3] A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices
    Ekstrom, Sven-Erik
    Garoni, Carlo
    NUMERICAL ALGORITHMS, 2019, 80 (03) : 819 - 848
  • [4] A matrix-less method to approximate the spectrum and the spectral function of Toeplitz matrices with real eigenvalues
    Sven-Erik Ekström
    Paris Vassalos
    Numerical Algorithms, 2022, 89 : 701 - 720
  • [5] A matrix-less method to approximate the spectrum and the spectral function of Toeplitz matrices with real eigenvalues
    Ekstrom, Sven-Erik
    Vassalos, Paris
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 701 - 720
  • [6] On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices
    Elouafi M.
    Arabian Journal of Mathematics, 2018, 7 (2) : 91 - 99
  • [7] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    Batalshchikov, A.
    Grudsky, S.
    Ramirez de Arellano, E.
    Stukopin, V.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 301 - 330
  • [8] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    A. Batalshchikov
    S. Grudsky
    E. Ramírez de Arellano
    V. Stukopin
    Integral Equations and Operator Theory, 2015, 83 : 301 - 330
  • [9] Recursion formulae for the characteristic polynomial of symmetric banded matrices
    Kratz, Werner
    Tentler, Markus
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2482 - 2500
  • [10] Matrix-less spectral approximation for large structured matrices
    Giovanni Barbarino
    Melker Claesson
    Sven-Erik Ekström
    Carlo Garoni
    David Meadon
    Hendrik Speleers
    BIT Numerical Mathematics, 2025, 65 (1)