ON THE BANDED TOEPLITZ STRUCTURED DISTANCE TO SYMMETRIC POSITIVE SEMIDEFINITENESS

被引:0
|
作者
Noschese, Silvia [1 ]
Reichel, Lothar [2 ]
机构
[1] SAPIENZA Univ Roma, Dipartimento Matemat Guido Castelnuovo, Ple Moro 2, I-00185 Rome, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
来源
关键词
Matrix nearness problem; Toeplitz structure; Symmetric positive definite matrix; Structured distance; Banded Toeplitz matrix; PRECONDITIONING STRATEGIES; NORMAL MATRICES; EIGENVALUES; SYSTEMS; DEPARTURE; NORMALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the determination of a close real banded positive definite Toeplitz matrix in the Frobenius norm to a given square real banded matrix. While it is straightforward to determine the closest banded Toeplitz matrix to a given square matrix, the additional requirement of positive definiteness makes the problem difficult. We review available theoretical results and provide a simple approach to determine a banded positive definite Toeplitz matrix.
引用
下载
收藏
页码:266 / 279
页数:14
相关论文
共 50 条
  • [1] The structured distance to normality of banded Toeplitz matrices
    Noschese, Silvia
    Reichel, Lothar
    BIT NUMERICAL MATHEMATICS, 2009, 49 (03) : 629 - 640
  • [2] The structured distance to normality of banded Toeplitz matrices
    Silvia Noschese
    Lothar Reichel
    BIT Numerical Mathematics, 2009, 49 : 629 - 640
  • [3] TOEPLITZ DETERMINANTS AND POSITIVE SEMIDEFINITENESS
    MAKHOUL, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (03) : 743 - 746
  • [4] THE STRUCTURED DISTANCE TO SINGULARITY OF A SYMMETRIC TRIDIAGONAL TOEPLITZ MATRIX
    Noschese, Silvia
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 59 : 43 - 59
  • [5] Sparse preconditioner for symmetric positive definite banded circulant and toeplitz linear systems
    Evans, D.J.
    Caf, D.
    International Journal of Computer Mathematics, 1994, 54 (3-4)
  • [6] Linear operators and positive semidefiniteness of symmetric tensor spaces
    Luo ZiYan
    Qi LiQun
    Ye YinYu
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 197 - 212
  • [7] Linear operators and positive semidefiniteness of symmetric tensor spaces
    LUO Zi Yan
    QI Li Qun
    YE Yin Yu
    Science China Mathematics, 2015, 58 (01) : 197 - 212
  • [8] Linear operators and positive semidefiniteness of symmetric tensor spaces
    ZiYan Luo
    LiQun Qi
    YinYu Ye
    Science China Mathematics, 2015, 58 : 197 - 212
  • [9] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    Batalshchikov, A.
    Grudsky, S.
    Ramirez de Arellano, E.
    Stukopin, V.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 301 - 330
  • [10] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    A. Batalshchikov
    S. Grudsky
    E. Ramírez de Arellano
    V. Stukopin
    Integral Equations and Operator Theory, 2015, 83 : 301 - 330