TOEPLITZ DETERMINANTS AND POSITIVE SEMIDEFINITENESS

被引:1
|
作者
MAKHOUL, J
机构
[1] Bolt Beranek and Newman Inc., Cambridge
关键词
Determinants - Positive Semidefinite Matrices - Toeplitz Matrices;
D O I
10.1109/78.80862
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We explore the role that the determinants of real, symmetric, Toeplitz matrices play in testing for their positive semidefiniteness. We show that the "leading principal minor" test used to test for positive definiteness is not sufficient in general to test for positive semidefiniteness of Toeplitz matrices, except in certain cases. We derive several properties and show in which cases the leading principal minor test is indeed sufficient. We then present a simple method for testing the positive semidefiniteness of all symmetric Toeplitz matrices.
引用
下载
收藏
页码:743 / 746
页数:4
相关论文
共 50 条
  • [1] ON THE BANDED TOEPLITZ STRUCTURED DISTANCE TO SYMMETRIC POSITIVE SEMIDEFINITENESS
    Noschese, Silvia
    Reichel, Lothar
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 266 - 279
  • [2] THE POSITIVE SEMIDEFINITENESS OF PARTITIONED MATRICES
    BEKKER, PA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 111 : 261 - 278
  • [3] A note on the positive semidefiniteness of Aα(G)
    Nikiforov, Vladimir
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 156 - 163
  • [4] Positive semidefiniteness of discrete quadratic functionals
    Bohner, M
    Dosly, O
    Kratz, W
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 : 627 - 636
  • [5] A criterion for the positive semidefiniteness of a diffusivity function
    Sang, Caili
    Zhao, Jianxing
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (02) : 1207 - 1221
  • [6] A criterion for the positive semidefiniteness of a diffusivity function
    Caili Sang
    Jianxing Zhao
    Japan Journal of Industrial and Applied Mathematics, 2024, 41 : 1207 - 1221
  • [7] Positive semidefiniteness of Aα(G) on some families of graphs
    Brondani, A. E.
    Franca, F. A. M.
    Oliveira, C. S.
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 113 - 123
  • [8] Linear operators and positive semidefiniteness of symmetric tensor spaces
    Luo ZiYan
    Qi LiQun
    Ye YinYu
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 197 - 212
  • [9] FALLACIES IN COMPUTATIONAL TESTING OF MATRIX POSITIVE DEFINITENESS SEMIDEFINITENESS
    KERR, TH
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1990, 26 (02) : 415 - 420
  • [10] Testing Positive Semidefiniteness Using Linear Measurements
    Needell, Deanna
    Swartworth, William
    Woodruff, David P.
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 87 - 97