Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3

被引:19
|
作者
Silva-Guillen, J. A. [1 ,2 ]
Canadell, E. [3 ]
Guinea, F. [2 ,4 ]
Roldan, R. [5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Fdn IMDEA Nanociencia, C Faraday 9,Campus Cantoblanco, Madrid 28049, Spain
[3] CSIC, Inst Ciencia Mat Barcelona ICMAB, Campus Bellaterra, Bellaterra 08193, Spain
[4] Univ Manchester, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
[5] CSIC, ICMM, Mat Sci Factory, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain
来源
ACS PHOTONICS | 2018年 / 5卷 / 08期
关键词
transition metal trichalcogenides; 2D materials; strain; anisotropy tuning; plasmons; optoelectronics; TRANSITION-METAL TRICHALCOGENIDES; TITANIUM TRISULFIDE TIS3; SINGLE-LAYER; ELECTRONIC-PROPERTIES; SEMICONDUCTOR; GAP; PSEUDOPOTENTIALS; CRYSTALS;
D O I
10.1021/acsphotonics.8b00467
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The benefits of two-dimensional (2D) materials for applications in nanotechnology can be widened by exploiting the intrinsic anisotropy of some of those crystals, being black phosphorus the most well-known example. In this work we demonstrate that the anisotropy of TiS3, which is even stronger than that of black phosphorus, can be tuned by means of strain engineering. Using density functional theory calculations, we find that the ellipticity of the valence band can be inverted under moderate compressive strain, which is accompanied by an enhancement of the optical absorption. It is shown that the strain tuning of the band anisotropy can be exploited to focus plasmons in the desired direction, a feature that could be used to design TiS3 nanostructures with switchable plasmon channeling.
引用
收藏
页码:3231 / 3237
页数:13
相关论文
共 50 条
  • [41] PHOTO-ELECTROCHEMICAL STUDY OF TIS3 IN AQUEOUS-SOLUTION
    GOROCHOV, O
    KATTY, A
    LENAGARD, N
    LEVYCLEMENT, C
    SCHLEICH, DM
    MATERIALS RESEARCH BULLETIN, 1983, 18 (01) : 111 - 118
  • [42] Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors
    Rohaizad, Nasuha
    Mayorga-Martinez, Carmen C.
    Sofer, Zdenek
    Webster, Richard D.
    Pumera, Martin
    BIOSENSORS & BIOELECTRONICS, 2020, 155 (155):
  • [43] Strain tuning of optoelectronic properties of covalent organic framework bilayers and heterostructures
    Alihosseini, M.
    Neek-Amal, M.
    PHYSICAL REVIEW B, 2023, 108 (16)
  • [44] Study of Hydrogen Adsorption on a Monolayer Tis3 Decorated with Mg Cations
    M. V. Kalinina
    M. Yu. Arsent’ev
    S. V. Balabanov
    Glass Physics and Chemistry, 2021, 47 : 270 - 275
  • [45] An X-ray spectrscopy study of the electronic structure of TiS3
    A. S. Shkvarin
    Yu. M. Yarmoshenko
    M. V. Yablonskikh
    A. I. Merentsov
    A. N. Titov
    Journal of Structural Chemistry, 2014, 55 : 1039 - 1043
  • [46] Ultrahigh Photoresponse of Few-Layer TiS3 Nanoribbon Transistors
    Island, Joshua O.
    Buscema, Michele
    Barawi, Mariam
    Clamagirand, Jose M.
    Ares, Jose R.
    Sanchez, Carlos
    Ferrer, Isabel J.
    Steele, Gary A.
    van der Zant, Herre S. J.
    Castellanos-Gomez, Andres
    ADVANCED OPTICAL MATERIALS, 2014, 2 (07): : 641 - 645
  • [47] Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3
    Torun, E.
    Sahin, H.
    Chaves, A.
    Wirtz, L.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [48] Time-Resolved Measurements of Photocarrier Dynamics in TiS3 Nanoribbons
    Cui, Qannan
    Lipatov, Alexey
    Wilt, Jamie Samantha
    Bellus, Matthew Z.
    Zeng, Xiao Cheng
    Wu, Judy
    Sinitskii, Alexander
    Zhao, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (28) : 18334 - 18338
  • [49] An X-ray spectrscopy study of the electronic structure of TiS3
    Shkvarin, A. S.
    Yarmoshenko, Yu. M.
    Yablonskikh, M. V.
    Merentsov, A. I.
    Titov, A. N.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2014, 55 (06) : 1039 - 1043
  • [50] Study of Hydrogen Adsorption on a Monolayer Tis3 Decorated with Mg Cations
    Kalinina, M. V.
    Arsent'ev, M. Yu.
    Balabanov, S. V.
    GLASS PHYSICS AND CHEMISTRY, 2021, 47 (03) : 270 - 275