Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3

被引:19
|
作者
Silva-Guillen, J. A. [1 ,2 ]
Canadell, E. [3 ]
Guinea, F. [2 ,4 ]
Roldan, R. [5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Fdn IMDEA Nanociencia, C Faraday 9,Campus Cantoblanco, Madrid 28049, Spain
[3] CSIC, Inst Ciencia Mat Barcelona ICMAB, Campus Bellaterra, Bellaterra 08193, Spain
[4] Univ Manchester, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
[5] CSIC, ICMM, Mat Sci Factory, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain
来源
ACS PHOTONICS | 2018年 / 5卷 / 08期
关键词
transition metal trichalcogenides; 2D materials; strain; anisotropy tuning; plasmons; optoelectronics; TRANSITION-METAL TRICHALCOGENIDES; TITANIUM TRISULFIDE TIS3; SINGLE-LAYER; ELECTRONIC-PROPERTIES; SEMICONDUCTOR; GAP; PSEUDOPOTENTIALS; CRYSTALS;
D O I
10.1021/acsphotonics.8b00467
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The benefits of two-dimensional (2D) materials for applications in nanotechnology can be widened by exploiting the intrinsic anisotropy of some of those crystals, being black phosphorus the most well-known example. In this work we demonstrate that the anisotropy of TiS3, which is even stronger than that of black phosphorus, can be tuned by means of strain engineering. Using density functional theory calculations, we find that the ellipticity of the valence band can be inverted under moderate compressive strain, which is accompanied by an enhancement of the optical absorption. It is shown that the strain tuning of the band anisotropy can be exploited to focus plasmons in the desired direction, a feature that could be used to design TiS3 nanostructures with switchable plasmon channeling.
引用
收藏
页码:3231 / 3237
页数:13
相关论文
共 50 条
  • [31] XPS STUDY OF ONE-DIMENSIONAL COMPOUNDS - TIS3
    ENDO, K
    IHARA, H
    WATANABE, K
    GONDA, SI
    JOURNAL OF SOLID STATE CHEMISTRY, 1982, 44 (02) : 268 - 272
  • [32] Fine-Tuning the Optoelectronic Properties of Freestanding Borophene by Strain
    Adamska, Lyudmyla
    Sharifzadeh, Sahar
    ACS OMEGA, 2017, 2 (11): : 8290 - 8299
  • [33] Exfoliation, point defects and hydrogen storage properties of monolayer TiS3: an ab initio study
    Arsentev, M. Yu.
    Petrov, A. V.
    Missyul, A. B.
    Hammouri, M.
    RSC ADVANCES, 2018, 8 (46) : 26181 - 26191
  • [34] DISORDER EFFECTS IN THE LINEAR-CHAIN COMPOUND TIS3
    HSIEH, PL
    JACKSON, CM
    GRUNER, G
    SOLID STATE COMMUNICATIONS, 1983, 46 (07) : 505 - 507
  • [35] Defect structure of TiS3 single crystals with different resistivity
    I. N. Trunkin
    I. G. Gorlova
    N. B. Bolotina
    V. I. Bondarenko
    Y. M. Chesnokov
    A. L. Vasiliev
    Journal of Materials Science, 2021, 56 : 2150 - 2162
  • [36] Vacancy Formation and Oxidation Characteristics of Single Layer TiS3
    Iyikanat, F.
    Sahin, H.
    Senger, R. T.
    Peeters, F. M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (19): : 10709 - 10715
  • [37] Tuning the Optoelectronic Properties of SrVO3 via Strain and Transition-Metal Doping
    Manivannan, Purushothaman
    Giri, Sudatta
    Misra, Debolina
    JOURNAL OF ELECTRONIC MATERIALS, 2025, 54 (03) : 2297 - 2307
  • [38] Features of the conductivity of the quasi-one-dimensional compound TiS3
    I. G. Gorlova
    V. Ya. Pokrovskii
    S. G. Zybtsev
    A. N. Titov
    V. N. Timofeev
    Journal of Experimental and Theoretical Physics, 2010, 111 : 298 - 303
  • [39] Defect structure of TiS3 single crystals of the A-ZrSe3 type
    N. B. Bolotina
    I. G. Gorlova
    I. A. Verin
    A. N. Titov
    A. V. Arakcheeva
    Crystallography Reports, 2016, 61 : 923 - 930
  • [40] Defect Structure of TiS3 Single Crystals of the A-ZrSe3 Type
    Bolotina, N. B.
    Gorlova, I. G.
    Verin, I. A.
    Titov, A. N.
    Arakcheeva, A. V.
    CRYSTALLOGRAPHY REPORTS, 2016, 61 (06) : 923 - 930