Optimization of the Temperature-Dependent Electrical Resistivity in Epoxy/Positive Temperature Coefficient Ceramic Nanocomposites

被引:15
|
作者
Teng, Chenyuan [1 ,2 ]
Zhou, Yuanxiang [1 ,2 ,3 ]
Wu, Chao [4 ]
Zhang, Ling [1 ]
Zhang, Yunxiao [1 ]
Zhou, Wenjun [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst & Generat Equipment, Beijing, Peoples R China
[2] Wuhan Univ, Sch Elect Engn & Automat, Wuhan, Hubei, Peoples R China
[3] Xinjiang Univ, Wind Solar Storage Div, State Key Lab Power Syst & Generat Equipment, Sch Elect Engn, Urumqi, Xinjiang, Peoples R China
[4] Univ Connecticut, Inst Mat Sci, Elect Insulat Res Ctr, Storrs, CT USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
epoxy resin; positive temperature coefficient nanoparticles; resistivity-temperature characteristics; electric field distribution; trap characteristic;
D O I
10.1109/TDEI.2020.009214
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nano-size positive temperature coefficient (PTC) ceramic particles and epoxy composites doped with 0, 0.5, 1, 5, 10 and 20 phr of PTC nanoparticles are prepared to suppress the decrease of electrical resistivity with temperature. Electrical resistivity under 30, 50, 70, 90, and 110 degrees C, DC breakdown strength, and trap characteristic are measured. DC electric field distribution under radical temperature gradient is simulated using a simplified bushing model insulated with prepared materials. The mechanism for the regulating of electrical resistivity-temperature characteristic of epoxy composites is discussed. The electrical resistivity at 110 degrees C, DC breakdown strength at 110 degrees C, and electric field distortion of the epoxy composite with 1 phr PTC nanoparticles is 454, 131 and 74%, respectively of the neat epoxy resin, which exhibits potential to be used as insulating materials in high voltage DC electrical systems.
引用
收藏
页码:468 / 475
页数:8
相关论文
共 50 条
  • [41] The temperature-dependent properties of epoxy-functionalized graphene oxide/epoxy nanocomposites: insights from simulation and experiment
    Fan, Jie
    Li, Panpan
    Wang, Zhijian
    Yang, Jiping
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (32) : 15298 - 15313
  • [42] The temperature-dependent properties of epoxy-functionalized graphene oxide/epoxy nanocomposites: insights from simulation and experiment
    Jie Fan
    Panpan Li
    Zhijian Wang
    Jiping Yang
    Journal of Materials Science, 2022, 57 : 15298 - 15313
  • [43] Temperature Dependent Electrical Resistivity of Liquid Sn
    Prajapati, A. V.
    Sonvane, Y. A.
    Patel, H. P.
    Thakor, P. B.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [44] TEMPERATURE-DEPENDENT RESISTIVITY FROM PHONONS IN CUPRATE SUPERCONDUCTORS
    PICKETT, WE
    JOURNAL OF SUPERCONDUCTIVITY, 1991, 4 (06): : 397 - 407
  • [45] ANISOTROPIC TEMPERATURE-DEPENDENT RESISTIVITY OF CD, ZN, AND MG
    ALDERSON, JEA
    HURD, CM
    PHYSICAL REVIEW B, 1975, 12 (02): : 501 - 508
  • [46] TEMPERATURE-DEPENDENT ANISOTROPY OF THERMAL RESISTIVITY OF ZINC AND CADMIUM
    CHAN, WC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (04): : 577 - 577
  • [47] TEMPERATURE-DEPENDENT RESISTIVITY OF HEAVILY DOPED SILICON AND GERMANIUM
    SERNELIUS, BE
    PHYSICAL REVIEW B, 1990, 41 (05): : 3060 - 3068
  • [48] TEMPERATURE-DEPENDENT RESISTIVITY OF DILUTE ALUMINUM-ALLOYS
    DOSDALE, T
    MORGAN, GJ
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1974, 4 (03): : 402 - 418
  • [49] Temperature-dependent resistivity of alternative metal thin films
    Siniscalchi, Marco
    Tierno, Davide
    Moors, Kristof
    Tokei, Zsolt
    Adelmann, Christoph
    APPLIED PHYSICS LETTERS, 2020, 117 (04)
  • [50] TEMPERATURE-DEPENDENT RESISTIVITY OF NI-BASE ALLOYS
    MWANJE, J
    AYIERA, EM
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1981, 65 (01): : K7 - K8