Optimization of the Temperature-Dependent Electrical Resistivity in Epoxy/Positive Temperature Coefficient Ceramic Nanocomposites

被引:15
|
作者
Teng, Chenyuan [1 ,2 ]
Zhou, Yuanxiang [1 ,2 ,3 ]
Wu, Chao [4 ]
Zhang, Ling [1 ]
Zhang, Yunxiao [1 ]
Zhou, Wenjun [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst & Generat Equipment, Beijing, Peoples R China
[2] Wuhan Univ, Sch Elect Engn & Automat, Wuhan, Hubei, Peoples R China
[3] Xinjiang Univ, Wind Solar Storage Div, State Key Lab Power Syst & Generat Equipment, Sch Elect Engn, Urumqi, Xinjiang, Peoples R China
[4] Univ Connecticut, Inst Mat Sci, Elect Insulat Res Ctr, Storrs, CT USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
epoxy resin; positive temperature coefficient nanoparticles; resistivity-temperature characteristics; electric field distribution; trap characteristic;
D O I
10.1109/TDEI.2020.009214
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nano-size positive temperature coefficient (PTC) ceramic particles and epoxy composites doped with 0, 0.5, 1, 5, 10 and 20 phr of PTC nanoparticles are prepared to suppress the decrease of electrical resistivity with temperature. Electrical resistivity under 30, 50, 70, 90, and 110 degrees C, DC breakdown strength, and trap characteristic are measured. DC electric field distribution under radical temperature gradient is simulated using a simplified bushing model insulated with prepared materials. The mechanism for the regulating of electrical resistivity-temperature characteristic of epoxy composites is discussed. The electrical resistivity at 110 degrees C, DC breakdown strength at 110 degrees C, and electric field distortion of the epoxy composite with 1 phr PTC nanoparticles is 454, 131 and 74%, respectively of the neat epoxy resin, which exhibits potential to be used as insulating materials in high voltage DC electrical systems.
引用
收藏
页码:468 / 475
页数:8
相关论文
共 50 条
  • [31] TEMPERATURE-DEPENDENT ELECTRICAL PROPERTIES OF HGSE
    LEHOCZKY, SL
    BROERMAN, JG
    NELSON, DA
    WHITSETT, CR
    PHYSICAL REVIEW B, 1974, 9 (04): : 1598 - 1620
  • [32] Temperature-Dependent Fracture Toughness of Epoxy Vitrimers
    Sun, Yuxiang
    Wang, Xudong
    Zhao, Yi
    Chen, Xi
    Shi, Qian
    Jia, Kun
    MACROMOLECULES, 2025, 58 (02) : 942 - 952
  • [33] Research on atmosphere sinter of the positive temperature coefficient resistivity
    Lu, Hui
    Chen, Housheng
    Wu, Chongruo
    Dianzi Qijian/Journal of Electron Devices, 21 (01): : 18 - 22
  • [34] ELECTRICAL-RESISTIVITY AND TEMPERATURE-COEFFICIENT OF RESISTIVITY OF COBALT FILMS
    PAL, AK
    CHAUDHURI, S
    BARUA, AK
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1976, 9 (15) : 2261 - &
  • [35] Printed graphene films with positive temperature coefficient of resistivity
    Banerjee, Indrani
    Faris, Tsegie
    Stoeva, Zlatka
    Sharma, Ashwani K.
    Ray, Asim K.
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 (10) : 4035 - 4039
  • [36] STRAIN-INDUCED CHANGES IN THE TEMPERATURE-DEPENDENT COMPONENT OF THE ELECTRICAL-RESISTIVITY OF CU
    KOS, JF
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1987, 17 (01): : 123 - 129
  • [37] Inverse temperature-dependent perfusion coefficient reconstruction
    Trucu, D.
    Ingham, D. B.
    Lesnic, D.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (05) : 542 - 549
  • [38] Modeling of field dependent resistivity of BaTiO3 positive temperature coefficient resistors
    Wong, H
    Han, PG
    Poon, MC
    Chen, YY
    Zheng, XR
    1998 IEEE HONG KONG ELECTRON DEVICES MEETING, PROCEEDINGS, 1998, : 45 - 48