Global optimization in clustering using hyperbolic cross points

被引:4
|
作者
Hu, Y.-K. [1 ]
Hu, Y. P.
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
[2] Beijing Union Univ, Expt & Training Base, Beijing 100101, Peoples R China
关键词
clustering; fuzzy c-means; hard c-means; global optimization; hyperbolic cross points; genetic algorithms;
D O I
10.1016/j.patcog.2006.11.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Erich Novak and Klaus Ritter developed in 1996 a global optimization algorithm that uses hyperbolic cross points (HCPs). In this paper we develop a hybrid algorithm for clustering called CMHCP that uses a modified version of this HCP algorithm for global search and the alternating optimization for local search. The program has been tested extensively with very promising results and high efficiency. This provides a nice addition to the arsenal of global optimization in clustering. In the process, we also analyze the smoothness of some reformulated objective functions. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1722 / 1733
页数:12
相关论文
共 50 条
  • [41] A clustering-based differential evolution for global optimization
    Cai, Zhihua
    Gong, Wenyin
    Ling, Charles X.
    Zhang, Harry
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 1363 - 1379
  • [42] UEGO, an abstract clustering technique for multimodal global optimization
    Jelasity, M
    Ortigosa, PM
    García, I
    JOURNAL OF HEURISTICS, 2001, 7 (03) : 215 - 233
  • [43] A Local and Global Discriminative Framework and Optimization for Balanced Clustering
    Han, Junwei
    Liu, Hanyang
    Nie, Feiping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (10) : 3059 - 3071
  • [44] A Hybrid PSO Based on Dynamic Clustering for Global Optimization
    Li Hongru
    Hu Jinxing
    Jiang Shouyong
    IFAC PAPERSONLINE, 2018, 51 (18): : 269 - 274
  • [45] Clustering methods for large scale geometrical global optimization
    Bagattini, Francesco
    Schoen, Fabio
    Tigli, Luca
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (05): : 1099 - 1122
  • [46] Global optimization using a synchronization of multiple search Points autonomously driven by a chaotic dynamic model
    Takashi Okamoto
    Eitaro Aiyoshi
    Journal of Global Optimization, 2008, 41 : 219 - 244
  • [47] Global optimization using a synchronization of multiple search Points autonomously driven by a chaotic dynamic model
    Okamoto, Takashi
    Aiyoshi, Eitaro
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (02) : 219 - 244
  • [48] ELISA ASSAY OPTIMIZATION USING HYPERBOLIC REGRESSION
    STUDNICKA, GM
    COMPUTER APPLICATIONS IN THE BIOSCIENCES, 1991, 7 (02): : 217 - 224
  • [49] Clustering large dynamic datasets using exemplar points
    Sia, W
    Lazarescu, MM
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, PROCEEDINDS, 2005, 3587 : 163 - 173
  • [50] On the hyperbolic limit points of groups acting on hyperbolic spaces
    Pavone M.
    Rendiconti del Circolo Matematico di Palermo, 1998, 47 (1) : 49 - 70