Global optimization in clustering using hyperbolic cross points

被引:4
|
作者
Hu, Y.-K. [1 ]
Hu, Y. P.
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
[2] Beijing Union Univ, Expt & Training Base, Beijing 100101, Peoples R China
关键词
clustering; fuzzy c-means; hard c-means; global optimization; hyperbolic cross points; genetic algorithms;
D O I
10.1016/j.patcog.2006.11.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Erich Novak and Klaus Ritter developed in 1996 a global optimization algorithm that uses hyperbolic cross points (HCPs). In this paper we develop a hybrid algorithm for clustering called CMHCP that uses a modified version of this HCP algorithm for global search and the alternating optimization for local search. The program has been tested extensively with very promising results and high efficiency. This provides a nice addition to the arsenal of global optimization in clustering. In the process, we also analyze the smoothness of some reformulated objective functions. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1722 / 1733
页数:12
相关论文
共 50 条
  • [31] Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction
    LI Yulin
    LIU Li
    LONG Teng
    DONG Weili
    Chinese Journal of Mechanical Engineering, 2013, 26 (05) : 928 - 939
  • [32] Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction
    LI Yulin
    LIU Li
    LONG Teng
    DONG Weili
    Chinese Journal of Mechanical Engineering, 2013, (05) : 928 - 939
  • [33] The Fixed Points and Cross-Ratios of Hyperbolic Mobius Transformations in Bicomplex Space
    Chen, Litao
    Dai, Binlin
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (04)
  • [34] Prediction of Tricritical Points in Ternary Mixtures by Global Optimization
    Henderson, Nelio
    Rodrigues, Raimundo A., Jr.
    Sacco, Wagner F.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (12) : 4931 - 4939
  • [35] A global optimization method for semi-supervised clustering
    Xia, Yu
    DATA MINING AND KNOWLEDGE DISCOVERY, 2009, 18 (02) : 214 - 256
  • [36] Enhanced aquila optimizer for global optimization and data clustering
    Laith Abualigah
    Saleh Ali Alomari
    Mohammad H. Almomani
    Raed Abu Zitar
    Hazem Migdady
    Kashif Saleem
    Aseel Smerat
    Vaclav Snasel
    Amir H. Gandomi
    Scientific Reports, 15 (1)
  • [37] Studies of multi-start clustering for global optimization
    Tu, W
    Mayne, RW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (09) : 2239 - 2252
  • [38] UEGO, an Abstract Clustering Technique for Multimodal Global Optimization
    Márk Jelasity
    Pilar Martínez Ortigosa
    Inmaculada García
    Journal of Heuristics, 2001, 7 : 215 - 233
  • [39] A global optimization method for semi-supervised clustering
    Yu Xia
    Data Mining and Knowledge Discovery, 2009, 18 : 214 - 256
  • [40] A Scalable Deterministic Global Optimization Algorithm for Clustering Problems
    Hua, Kaixun
    Shi, Mingfei
    Cao, Yankai
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139