Discrete Pseudo-Fractional Fourier Transform and Its Fast Algorithm

被引:1
|
作者
Majorkowska-Mech, Dorota [1 ]
Cariow, Aleksandr [1 ]
机构
[1] West Pomeranian Univ Technol Szczecin, Fac Comp Sci & Informat Technol, Zolnierska 49, PL-71210 Szczecin, Poland
关键词
signal and image processing; discrete fractional Fourier transform; Kronecker product;
D O I
10.3390/electronics10172145
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we introduce a new discrete fractional transform for data sequences whose size is a composite number. The main kernels of the introduced transform are small-size discrete fractional Fourier transforms. Since the introduced transformation is not, in the generally known sense, a classical discrete fractional transform, we call it discrete pseudo-fractional Fourier transform. We also provide a generalization of this new transform, which depends on many fractional parameters. A fast algorithm for computing the introduced transform is developed and described.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The discrete fractional Fourier transform
    Candan, Ç
    Kutay, MA
    Ozaktas, HM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) : 1329 - 1337
  • [22] A New Fast Algorithm for Discrete Fractional Hadamard Transform
    Cariow, Aleksandr
    Majorkowska-Mech, Dorota
    Paplinski, Janusz P.
    Cariowa, Galina
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (07) : 2584 - 2592
  • [23] Pseudo-fractional differential equations and generalized g-Laplace transform
    J. Vanterler da C. Sousa
    Rubens F. Camargo
    E. Capelas de Oliveira
    Gastáo S. F. Frederico
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [24] Pseudo-fractional differential equations and generalized g-Laplace transform
    Sousa, J. Vanterler da C.
    Camargo, Rubens F.
    de Oliveira, E. Capelas
    Frederico, Gastao S. F.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (03)
  • [25] Accuracy of the discrete Fourier transform and the fast Fourier transform
    Schatzman, JC
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05): : 1150 - 1166
  • [26] A Fast Algorithm for Fractional Fourier Transform with Zooming-in Ability
    Zhao Xinghao
    Tao Ran
    Wang Yue
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 1934 - 1937
  • [27] Windowed fractional Fourier transform on graphs: Properties and fast algorithm
    Yan, Fang-Jia
    Li, Bing-Zhao
    DIGITAL SIGNAL PROCESSING, 2021, 118 (118)
  • [28] The fast computation of multi-angle discrete fractional Fourier transform
    Huang, Gaowa
    Zhang, Feng
    SIGNAL PROCESSING, 2024, 218
  • [29] A Fast Discrete Fourier Transform Algorithm Over Gf(28)
    Lin, T. C.
    Truong, T. K.
    Chen, Y. H.
    Lee, C. D.
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 1269 - 1275
  • [30] Double-image encryption algorithm based on discrete fractional angular transform and fractional Fourier transform
    Qiu, Tian
    Dai, Wei -Hua
    Chen, Su-Hua
    Zhou, Hang
    Gong, Li -Hua
    OPTICA APPLICATA, 2022, 52 (04) : 669 - 684