Discrete Pseudo-Fractional Fourier Transform and Its Fast Algorithm

被引:1
|
作者
Majorkowska-Mech, Dorota [1 ]
Cariow, Aleksandr [1 ]
机构
[1] West Pomeranian Univ Technol Szczecin, Fac Comp Sci & Informat Technol, Zolnierska 49, PL-71210 Szczecin, Poland
关键词
signal and image processing; discrete fractional Fourier transform; Kronecker product;
D O I
10.3390/electronics10172145
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we introduce a new discrete fractional transform for data sequences whose size is a composite number. The main kernels of the introduced transform are small-size discrete fractional Fourier transforms. Since the introduced transformation is not, in the generally known sense, a classical discrete fractional transform, we call it discrete pseudo-fractional Fourier transform. We also provide a generalization of this new transform, which depends on many fractional parameters. A fast algorithm for computing the introduced transform is developed and described.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Improved fast fractional-Fourier-transform algorithm
    Yang, XP
    Tan, QF
    Wei, XF
    Xiang, Y
    Yan, YB
    Jin, GF
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (09) : 1677 - 1681
  • [12] An affine projection algorithm with pseudo-fractional projection order
    Yoo J.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (07): : 904 - 907
  • [13] SUPERPOSITION THEOREM OF DISCRETE FOURIER TRANSFORM AND ITS APPLICATION TO FAST FOURIER TRANSFORM
    ACHILLES, D
    ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK, 1971, 25 (05): : 251 - &
  • [14] Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm
    Garcia, J
    Mas, D
    Dorsch, RG
    APPLIED OPTICS, 1996, 35 (35): : 7013 - 7018
  • [15] Sparse Discrete Fractional Fourier Transform and Its Applications
    Liu, Shengheng
    Shan, Tao
    Tao, Ran
    Zhang, Yimin D.
    Zhang, Guo
    Zhang, Feng
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) : 6582 - 6595
  • [16] Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm
    Dept. Interuniversitari d'Optica, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain
    不详
    Appl. Opt., 35 (7013-7018):
  • [17] Fast algorithm for determination of linear canonical transform and fractional Fourier transform
    Hennelly, BM
    Sheridan, JT
    PHOTON MANAGEMENT, 2004, 5456 : 472 - 483
  • [18] Discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 536 - 539
  • [19] Discrete fractional Fourier transform
    Candan, Cagatay
    Kutay, M.Alper
    Ozaktas, Haldun M.
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1713 - 1716
  • [20] The discrete fractional Fourier transform
    Candan, C
    Kutay, MA
    Ozaktas, HM
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1713 - 1716