Induction of manganese superoxide dismutase gene expression in bronchoepithelial cells after rockwool exposure

被引:2
|
作者
Marks-Konczalik, J
Gillissen, A
Jaworska, M
Loseke, S
Voss, B
Fisseler-Eckhoff, A
Schmitz, I
Schultze-Werninghaus, G
机构
[1] Univ Hosp Bergmannsheil, Dept Internal Med, Div Pneumol Allergol & Sleep Med, D-44789 Bochum, Germany
[2] Univ Hosp Bergmannsheil, Inst Pathol, D-44789 Bochum, Germany
[3] Profess Assoc Res Inst Occupat Med, Bochum, Germany
关键词
gene expression; crocidolite; rockwool; silica; quartz; human bronchoepithelial cells; manganese superoxide dismutase;
D O I
10.1007/PL00007600
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Superoxide dismutases play an important protective role in the lung defense against the pro-oxidative effect of fibrous dusts (e.g. crocidolite fibers). Particularly crocidolite, but also other asbestos fibers, are known to induce cellular antioxidant defense. Although rockwool, a man-made fiber made from rock, is used widely for insulation purposes, its effects on the superoxide dismutases in bronchoepithelial cells have not been investigated. Thus, the purpose of this study was to determine whether human bronchoepithelial cells (BEAS 2B) respond to rockwool fibers (115-4 experimental rockwool fiber) by induction of MnSOD mRNA and an increase of MnSOD activity levels, The results were compared with BEAS 2B cells exposed to silica (alpha-quartz: DQ12; SiO2) and UICC (Union Internationale Contre le Cancer) crocidolite (concentrations of all dusts: 0, 2, 5, 10, 25, 50 mu g/cm(2) = 0, 2.4, 6, 12, 30, 60 mu g/ml; 24-h exposure) as control fibers. Scanning electron microscopy confirmed close dust cell contact under all experimental settings. Very low MnSOD mRNA baseline levels rose significantly (p < 0.001) in BEAS 2B cells exposed to all three dusts at 2 mu g/cm(2). However, at >25 mu g/cm(2) MnSOD mRNA levels in silica- and crocidolite- but not in rockwool-exposed cells decreased. Slight (no significance) increases of MnSOD activity were observed which decreased at higher dust (>5 mu g/cm(2)) concentrations. These results suggest that: (1) like crocidolite and silica, rockwool accelerates MnSOD gene expression in bronchoepithelial cells; (2) an increase of MnSOD mRNA levels is not accompanied by MnSOD activity elevation; (3) in contrast to rockwool, high concentrations (greater than or equal to 25 mu g/cm(2)) of crocidolite and silica reduced MnSOD activity and MnSOD mRNA levels. Because oxidants (H2O2) and crocidolite fibers were shown to reduce SOD activity, lack of active MnSOD protein may be caused by inactivation on a post-translational level. Furthermore, the decline of MnSOD mRNA and MnSOD activity levels coincides with increasing cytotoxicity. In conclusion, rockwool was demonstrated to induce MnSOD gene expression, perhaps because of its pro-oxidative effect in bronchoepithelial cells. In contrast to crocidolite and silica, rockwool fibers are not cytotoxic in this experimental setting.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [41] Manganese enhances the expression of the manganese superoxide dismutase in cultured primary chick embryonic myocardial cells
    QIN Shi-zhen
    LIAO Xiu-dong
    LU Lin
    ZHANG Li-yang
    XI Lin
    GUO Yan-li
    LUO Xu-gang
    JournalofIntegrativeAgriculture, 2017, 16 (09) : 2038 - 2046
  • [42] Manganese enhances the expression of the manganese superoxide dismutase in cultured primary chick embryonic myocardial cells
    Qin Shi-zhen
    Liao Xiu-dong
    Lu Lin
    Zhang Li-yang
    Xi Lin
    Guo Yan-li
    Luo Xu-gang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (09) : 2038 - 2046
  • [43] EXPRESSION AND GENOTYPE OF MANGANESE SUPEROXIDE DISMUTASE IN LUNG CANCER CELLS OF SMOKER PATIENTS
    Wanandi, Septelia Inawati
    Syahruddin, Elisna
    Paramita, Reni
    Margareth, Ay Ly
    MAKARA JOURNAL OF HEALTH RESEARCH, 2009, 13 (02): : 83 - 87
  • [44] Effect of expression of manganese superoxide dismutase in baculovirus-infected insect cells
    Wang, P
    Oberley, LW
    Howe, D
    Jarvis, DL
    Chauhan, G
    Murhammer, DW
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2004, 119 (02) : 181 - 193
  • [45] Epigenetic Regulation of Manganese Superoxide Dismutase Expression in Human Breast Cancer Cells
    Hitchler, Michael J.
    Wikainapakul, Kornwipa
    Yu, Lei
    Powers, Kristy
    Attatippaholkun, Watcharee
    Domann, Frederick E.
    EPIGENETICS, 2006, 1 (04) : 163 - 171
  • [46] Effect of expression of manganese superoxide dismutase in baculovirus-infected insect cells
    Ying Wang
    Larry W. Oberley
    Dale Howe
    Donald L. Jarvis
    Gaurav Chauhan
    David W. Murhammer
    Applied Biochemistry and Biotechnology, 2004, 119 : 181 - 193
  • [47] Manganese superoxide dismutase gene polymorphisms in psoriatic arthritis
    Yen, JH
    Tsai, WC
    Lin, CH
    Ou, TT
    Hu, CJ
    Liu, HW
    DISEASE MARKERS, 2003, 19 (06) : 263 - 265
  • [48] Transcription regulation of human manganese superoxide dismutase gene
    St Clair, DK
    Porntadavity, S
    Xu, Y
    Kiningham, K
    SUPEROXIDE DISMUTASE, 2002, 349 : 306 - 312
  • [49] Expression of manganese superoxide dismutase in esophageal and gastric cancers
    Ryo Izutani
    Satoshi Asano
    Motohiro Imano
    Daisuke Kuroda
    Michio Kato
    Harumasa Ohyanagi
    Journal of Gastroenterology, 1998, 33 : 816 - 822
  • [50] Induction of manganese superoxide dismutase in acute spinal cord injury
    Earnhardt, JN
    Streit, WJ
    Anderson, DK
    O'Steen, WA
    Nick, HS
    JOURNAL OF NEUROTRAUMA, 2002, 19 (09) : 1065 - 1079