Induction of manganese superoxide dismutase gene expression in bronchoepithelial cells after rockwool exposure

被引:2
|
作者
Marks-Konczalik, J
Gillissen, A
Jaworska, M
Loseke, S
Voss, B
Fisseler-Eckhoff, A
Schmitz, I
Schultze-Werninghaus, G
机构
[1] Univ Hosp Bergmannsheil, Dept Internal Med, Div Pneumol Allergol & Sleep Med, D-44789 Bochum, Germany
[2] Univ Hosp Bergmannsheil, Inst Pathol, D-44789 Bochum, Germany
[3] Profess Assoc Res Inst Occupat Med, Bochum, Germany
关键词
gene expression; crocidolite; rockwool; silica; quartz; human bronchoepithelial cells; manganese superoxide dismutase;
D O I
10.1007/PL00007600
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Superoxide dismutases play an important protective role in the lung defense against the pro-oxidative effect of fibrous dusts (e.g. crocidolite fibers). Particularly crocidolite, but also other asbestos fibers, are known to induce cellular antioxidant defense. Although rockwool, a man-made fiber made from rock, is used widely for insulation purposes, its effects on the superoxide dismutases in bronchoepithelial cells have not been investigated. Thus, the purpose of this study was to determine whether human bronchoepithelial cells (BEAS 2B) respond to rockwool fibers (115-4 experimental rockwool fiber) by induction of MnSOD mRNA and an increase of MnSOD activity levels, The results were compared with BEAS 2B cells exposed to silica (alpha-quartz: DQ12; SiO2) and UICC (Union Internationale Contre le Cancer) crocidolite (concentrations of all dusts: 0, 2, 5, 10, 25, 50 mu g/cm(2) = 0, 2.4, 6, 12, 30, 60 mu g/ml; 24-h exposure) as control fibers. Scanning electron microscopy confirmed close dust cell contact under all experimental settings. Very low MnSOD mRNA baseline levels rose significantly (p < 0.001) in BEAS 2B cells exposed to all three dusts at 2 mu g/cm(2). However, at >25 mu g/cm(2) MnSOD mRNA levels in silica- and crocidolite- but not in rockwool-exposed cells decreased. Slight (no significance) increases of MnSOD activity were observed which decreased at higher dust (>5 mu g/cm(2)) concentrations. These results suggest that: (1) like crocidolite and silica, rockwool accelerates MnSOD gene expression in bronchoepithelial cells; (2) an increase of MnSOD mRNA levels is not accompanied by MnSOD activity elevation; (3) in contrast to rockwool, high concentrations (greater than or equal to 25 mu g/cm(2)) of crocidolite and silica reduced MnSOD activity and MnSOD mRNA levels. Because oxidants (H2O2) and crocidolite fibers were shown to reduce SOD activity, lack of active MnSOD protein may be caused by inactivation on a post-translational level. Furthermore, the decline of MnSOD mRNA and MnSOD activity levels coincides with increasing cytotoxicity. In conclusion, rockwool was demonstrated to induce MnSOD gene expression, perhaps because of its pro-oxidative effect in bronchoepithelial cells. In contrast to crocidolite and silica, rockwool fibers are not cytotoxic in this experimental setting.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [31] Gene expression of manganese-containing superoxide dismutase as a biomarker of manganese bioavailability for manganese sources in broilers
    Luo, X. G.
    Li, S. F.
    Lu, L.
    Liu, B.
    Kuang, X.
    Shao, G. Z.
    Yu, S. X.
    POULTRY SCIENCE, 2007, 86 (05) : 888 - 894
  • [32] Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells
    Xu, Y
    Krishnan, A
    Wan, XS
    Majima, H
    Yeh, CC
    Ludewig, G
    Kasarskis, EJ
    St Clair, DK
    ONCOGENE, 1999, 18 (01) : 93 - 102
  • [33] Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells
    Yong Xu
    Anuradha Krishnan
    X Steven Wan
    Hideyuki Majima
    Che-Chung Yeh
    Gabriele Ludewig
    Edward J Kasarskis
    Daret K St.Clair
    Oncogene, 1999, 18 : 93 - 102
  • [34] Manganese superoxide dismutase expression in gastric cancer
    Kato, M
    Izutani, R
    Asano, S
    Imano, M
    Kuroda, D
    Nomura, H
    Nakayama, T
    Ohyanagi, H
    PROGRESS IN GASTRIC CANCER RESEARCH 1997: PROCEEDINGS OF THE 2ND INTERNATIONAL GASTRIC CANCER CONGRESS, 1997, : 777 - 780
  • [35] Effect of Intravenously Injected Manganese on the Gene Expression of Manganese-Containing Superoxide Dismutase in Broilers
    Li, S. F.
    Luo, X. G.
    Lu, L.
    Liu, B.
    Kuang, X.
    Shao, G. Z.
    Yu, S. X.
    POULTRY SCIENCE, 2008, 87 (11) : 2259 - 2265
  • [36] Different mechanisms for the induction of copper-zinc superoxide dismutase and manganese superoxide dismutase by progesterone in human endometrial stromal cells
    Sugino, N
    Karube-Harada, A
    Sakata, A
    Takiguchi, S
    Kato, H
    HUMAN REPRODUCTION, 2002, 17 (07) : 1709 - 1714
  • [37] Manganese Superoxide Dismutase Gene Expression and Cognitive Functions in Recurrent Depressive Disorder
    Talarowska, Monika
    Orzechowska, Agata
    Szemraj, Janusz
    Su, Kuan-Pin
    Maes, Michael
    Galecki, Piotr
    NEUROPSYCHOBIOLOGY, 2014, 70 (01) : 23 - 28
  • [38] Radiosensitive gene therapy through imRNA expression for silencing manganese superoxide dismutase
    Qu, Yaming
    Zhao, Suping
    Hong, Jidong
    Tang, Sane
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2010, 136 (06) : 953 - 959
  • [39] Radiosensitive gene therapy through imRNA expression for silencing manganese superoxide dismutase
    Yaming Qu
    Suping Zhao
    Jidong Hong
    Sane Tang
    Journal of Cancer Research and Clinical Oncology, 2010, 136 : 953 - 959
  • [40] Protein kinase Cδ-dependent induction of manganese superoxide dismutase gene expression by microtubule-active anticancer drugs
    Das, KC
    Guo, XL
    White, CW
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (51) : 34639 - 34645