Sequential Monte Carlo-guided ensemble tracking

被引:1
|
作者
Wang, Yuru [1 ]
Liu, Qiaoyuan [1 ]
Jiang, Longkui [2 ]
Yin, Minghao [1 ]
Wang, Shengsheng [3 ]
机构
[1] North East Normal Univ, Comp Sci & Informat Technol, Changchun, Jilin Province, Peoples R China
[2] Jilin Business & Technol Coll, Sch Informat Engn, Changchun, Jilin Province, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun, Jilin Province, Peoples R China
来源
PLOS ONE | 2017年 / 12卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1371/journal.pone.0173297
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A great deal of robustness is allowed when visual tracking is considered as a classification problem. This paper combines a finite number of weak classifiers in a SMC framework as a strong classifier. The time-varying ensemble parameters (confidence of weak classifiers) are regarded as sequential arriving states and their posterior distribution is estimated in a Bayesian manner. Therefore, both the adaptiveness and stability are kept for the ensemble classification in handling scene changes and target deformation. Moreover, to increase the tracking accuracy, weak classifiers including Support Vector Machine (SVM) and Large Margin Distribution Machine (LDM) are combined as a hybrid strong one, with adaptiveness to the sample scales. Comprehensive experiments are performed on benchmark videos with various tracking challenges, and the proposed method is demonstrated to be better than or comparable to the state-of-the-art trackers.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multisensor fusion for target tracking using sequential Monte Carlo methods
    Vemula, Mahesh
    Djuric, Petar M.
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 1223 - 1227
  • [32] Tracking variable number of targets using sequential Monte Carlo methods
    Ng, William
    Li, Jack
    Godsill, Simon
    Vermaak, Jaco
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 1207 - 1211
  • [33] Online multitarget detection and tracking using sequential Monte Carlo methods
    Li, J
    Ng, W
    Godsill, S
    Vermaak, J
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 115 - 121
  • [34] Multi-target tracking in clutter with sequential Monte Carlo methods
    Liu, B.
    Ji, C.
    Zhang, Y.
    Hao, C.
    Wong, K. -K.
    IET RADAR SONAR AND NAVIGATION, 2010, 4 (05): : 662 - 672
  • [35] Sequential Monte Carlo methods for collaborative multi-sensor tracking
    Li, Xinrong
    Yang, Jue
    2007 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-8, 2007, : 3189 - 3194
  • [36] Sequential Monte Carlo tracking by fusing multiple cues in video sequences
    Brasnett, Paul
    Mihaylova, Lyudmila
    Bull, David
    Canagarajah, Nishan
    IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1217 - 1227
  • [37] Sequential Quasi-Monte Carlo Filter for Visual Object Tracking
    Ding, Xiaofeng
    Xu, Lizhong
    Wang, Xin
    Lv, Guofang
    Wu, Xuewen
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [38] Sequential Monte Carlo methods for multiple target tracking and data fusion
    Hue, C
    Le Cadre, JP
    Pérez, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 309 - 325
  • [39] On Scale Invariant Features and Sequential Monte Carlo Sampling for Bronchoscope Tracking
    Luo, Xiongbiao
    Feuerstein, Marco
    Kitasaka, Takayuki
    Natori, Hiroshi
    Takabatake, Hirotsugu
    Hasegawa, Yoshinori
    Mori, Kensaku
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964
  • [40] Sequential Monte Carlo implementation for infrared/radar maneuvering target tracking
    Zhang, Gaoyu
    Liang, Jimin
    Zhao, Heng
    Yang, Wanhai
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5066 - +