Sequential Monte Carlo-guided ensemble tracking

被引:1
|
作者
Wang, Yuru [1 ]
Liu, Qiaoyuan [1 ]
Jiang, Longkui [2 ]
Yin, Minghao [1 ]
Wang, Shengsheng [3 ]
机构
[1] North East Normal Univ, Comp Sci & Informat Technol, Changchun, Jilin Province, Peoples R China
[2] Jilin Business & Technol Coll, Sch Informat Engn, Changchun, Jilin Province, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun, Jilin Province, Peoples R China
来源
PLOS ONE | 2017年 / 12卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1371/journal.pone.0173297
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A great deal of robustness is allowed when visual tracking is considered as a classification problem. This paper combines a finite number of weak classifiers in a SMC framework as a strong classifier. The time-varying ensemble parameters (confidence of weak classifiers) are regarded as sequential arriving states and their posterior distribution is estimated in a Bayesian manner. Therefore, both the adaptiveness and stability are kept for the ensemble classification in handling scene changes and target deformation. Moreover, to increase the tracking accuracy, weak classifiers including Support Vector Machine (SVM) and Large Margin Distribution Machine (LDM) are combined as a hybrid strong one, with adaptiveness to the sample scales. Comprehensive experiments are performed on benchmark videos with various tracking challenges, and the proposed method is demonstrated to be better than or comparable to the state-of-the-art trackers.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Mobility tracking in cellular networks with sequential Monte Carlo filters
    Mihaylova, L
    Bull, D
    Angelova, D
    Canagarajah, N
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 107 - 114
  • [22] Contour tracking of contaminant clouds with sequential Monte Carlo methods
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1469 - 1472
  • [23] Sequential Monte Carlo fusion of sound and vision for speaker tracking
    Vermaak, J
    Gangnet, M
    Blake, A
    Pérez, P
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, 2001, : 741 - 746
  • [24] Improved sequential Monte Carlo filtering for ballistic target tracking
    Bruno, MGS
    Pavlov, A
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2005, 41 (03) : 1103 - 1108
  • [25] Sequential Monte Carlo methods for contour tracking of contaminant clouds
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    SIGNAL PROCESSING, 2010, 90 (01) : 249 - 260
  • [26] SEQUENTIAL MONTE CARLO
    HALTON, JH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN): : 57 - &
  • [27] Multiple interacting subcellular structure tracking by sequential Monte Carlo method
    Wen, Quan
    Gao, Jean
    Luby-Phelps, Kate
    2007 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2007, : 437 - +
  • [28] Sequential Monte Carlo tracking of body parameters in a sub-space
    Moeslund, TB
    Granum, E
    IEEE INTERNATIONAL WORKSHOP ON ANALYSIS AND MODELING OF FACE AND GESTURES, 2003, : 84 - 91
  • [29] Sequential Monte Carlo filtering for multi-aspect detection/tracking
    Bruno, Marcelo G. S.
    de Araujo, Rafael V.
    Pavlov, Anton G.
    2005 IEEE AEROSPACE CONFERENCE, VOLS 1-4, 2005, : 2092 - 2100
  • [30] Tracking multiple interacting subcellular structure by sequential Monte Carlo method
    Wen, Quan
    Luby-Phelps, Kate
    Gao, Jean
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2009, 3 (03) : 314 - 332