Identification of dynamic textures using Dynamic Mode Decomposition

被引:1
|
作者
Previtali, D. [1 ]
Valceschini, N. [1 ]
Mazzoleni, M. [1 ]
Previdi, F. [1 ]
机构
[1] Univ Bergamo, Dept Management Informat & Prod Engn, Via Galvani 2, I-24044 Dalmine, BG, Italy
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Dynamic textures; System Identification; Texture Synthesis; Dynamic Mode Decomposition;
D O I
10.1016/j.ifacol.2020.12.045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic Textures (DTs) are image sequences of moving scenes that present stationary properties in time. In this paper, we apply Dynamic Mode Decomposition (DMD) and Dynamic Mode Decomposition with Control (DMDc) to identify a parametric model of dynamic textures. The identification results are compared with a benchmark method from the dynamic texture literature, both from a mathematical and from a computational complexity point of view. Extensive simulations are carried out to assess the performance of the proposed algorithms with regards to synthesis and denoising purposes, with different types of dynamic textures. Results show that DMD and DMDc present lower error, lower residual noise and lower variance compared to the benchmark approach. Copyright (C) 2020 The Authors.
引用
收藏
页码:2423 / 2428
页数:6
相关论文
共 50 条
  • [31] Challenges in dynamic mode decomposition
    Wu, Ziyou
    Brunton, Steven L.
    Revzen, Shai
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (185)
  • [32] Randomized Dynamic Mode Decomposition
    Erichson, N. Benjamin
    Mathelin, Ionel
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 1867 - 1891
  • [33] Constrained Dynamic Mode Decomposition
    Krake T.
    Klotzl D.
    Eberhardt B.
    Weiskopf D.
    [J]. IEEE Trans Visual Comput Graphics, 2023, 1 (182-192): : 182 - 192
  • [34] Applications of the dynamic mode decomposition
    Schmid, P. J.
    Li, L.
    Juniper, M. P.
    Pust, O.
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 249 - 259
  • [35] Consistent Dynamic Mode Decomposition
    Azencot, Omri
    Yin, Wotao
    Bertozzi, Andrea
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03): : 1565 - 1585
  • [36] Bayesian Dynamic Mode Decomposition
    Takeishi, Naoya
    Kawahara, Yoshinobu
    Tabei, Yasuo
    Yairi, Takehisa
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2814 - 2821
  • [37] Output Dynamic Mode Decomposition: An extension of Dynamic Mode Decomposition based on output functional expansions
    Runolfsson, Thordur
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 7148 - 7152
  • [38] Identification of zonal pollutant diffusion characteristics using dynamic mode decomposition: Towards the deployment of sensors
    Ding, Junwei
    Cao, Shi-Jie
    [J]. BUILDING AND ENVIRONMENT, 2021, 206
  • [39] Discovering dynamic patterns from infectious disease data using dynamic mode decomposition
    Proctor, Joshua L.
    Eckhoff, Philip A.
    [J]. INTERNATIONAL HEALTH, 2015, 7 (02): : 139 - 145
  • [40] Identification of Linear Time-Invariant Systems with Dynamic Mode Decomposition
    Heiland, Jan
    Unger, Benjamin
    [J]. MATHEMATICS, 2022, 10 (03)