Identification of Linear Time-Invariant Systems with Dynamic Mode Decomposition

被引:3
|
作者
Heiland, Jan [1 ,3 ]
Unger, Benjamin [2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
[2] Univ Stuttgart, Stuttgart Ctr Simulat Sci, D-70563 Stuttgart, Germany
[3] Otto von Guericke Univ, Fac Math, D-39106 Magdeburg, Germany
关键词
dynamic mode decomposition; system identification; Runge-Kutta method; MATRIX;
D O I
10.3390/math10030418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dynamic mode decomposition (DMD) is a popular data-driven framework to extract linear dynamics from complex high-dimensional systems. In this work, we study the system identification properties of DMD. We first show that DMD is invariant under linear transformations in the image of the data matrix. If, in addition, the data are constructed from a linear time-invariant system, then we prove that DMD can recover the original dynamics under mild conditions. If the linear dynamics are discretized with the Runge-Kutta method, then we further classify the error of the DMD approximation and detail that for one-stage Runge-Kutta methods; even the continuous dynamics can be recovered with DMD. A numerical example illustrates the theoretical findings.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Linear and Time-Invariant Dynamic Systems
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 76 - 76
  • [2] Identification of linear time-invariant systems
    Larin V.B.
    Apostolyuk A.S.
    [J]. International Applied Mechanics, 2011, 47 (6) : 754 - 760
  • [3] Dynamic observers for linear time-invariant systems
    Park, JK
    Shin, DR
    Chung, TM
    [J]. AUTOMATICA, 2002, 38 (06) : 1083 - 1087
  • [4] CONTROLLABILITY AND OBSERVABILITY OF TIME-INVARIANT LINEAR DYNAMIC SYSTEMS
    Bohner, Martin
    Wintz, Nick
    [J]. MATHEMATICA BOHEMICA, 2012, 137 (02): : 149 - 163
  • [5] On the external positivity of linear time-invariant dynamic systems
    De la Sen, Manuel
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (02) : 188 - 192
  • [6] On the Distinguishability of Discrete Linear Time-Invariant Dynamic Systems
    Rosa, Paulo
    Silvestre, Carlos
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 3356 - 3361
  • [7] Identification of Linear Time-invariant, Nonlinear and Time Varying Dynamic Systems Using Genetic Programming
    Yuan, Xiao-lei
    Bai, Yan
    Dong, Ling
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 56 - 61
  • [8] Parameter identification of linear time-invariant systems using dynamic regressor extension and mixing
    Aranovskiy, Stanislav
    Belov, Alexey
    Ortega, Romeo
    Barabanov, Nikita
    Bobtsov, Alexey
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (06) : 1016 - 1030
  • [9] INVERSION OF LINEAR TIME-INVARIANT DYNAMIC-SYSTEMS WITH A DELAY
    BORUKHOV, VT
    [J]. AUTOMATION AND REMOTE CONTROL, 1980, 41 (07) : 898 - 904
  • [10] Identification of Linear Time-Invariant Systems From Multiple Experiments
    Markovsky, Ivan
    Pintelon, Rik
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (13) : 3549 - 3554